/external/tensorflow/tensorflow/contrib/keras/api/keras/losses/ |
D | __init__.py | 22 from tensorflow.python.keras.losses import binary_crossentropy 23 from tensorflow.python.keras.losses import categorical_crossentropy 24 from tensorflow.python.keras.losses import categorical_hinge 25 from tensorflow.python.keras.losses import cosine_similarity 26 from tensorflow.python.keras.losses import hinge 27 from tensorflow.python.keras.losses import kullback_leibler_divergence 28 from tensorflow.python.keras.losses import logcosh 29 from tensorflow.python.keras.losses import mean_absolute_error 30 from tensorflow.python.keras.losses import mean_absolute_percentage_error 31 from tensorflow.python.keras.losses import mean_squared_error [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | losses_test.py | 35 from tensorflow.python.ops.losses import losses 36 from tensorflow.python.ops.losses import util 52 losses.absolute_difference( 56 loss = losses.absolute_difference(self._predictions, self._predictions) 61 loss = losses.absolute_difference(self._labels, self._predictions) 67 loss = losses.absolute_difference(self._labels, self._predictions, weights) 73 loss = losses.absolute_difference(self._labels, self._predictions, 80 loss = losses.absolute_difference(self._labels, self._predictions, weights) 86 loss = losses.absolute_difference(self._labels, self._predictions, weights) 92 loss = losses.absolute_difference(self._labels, self._predictions, weights) [all …]
|
/external/tensorflow/tensorflow/contrib/losses/python/losses/ |
D | loss_ops.py | 44 def _scale_losses(losses, weights): argument 63 axis = list(range(start_index, losses.get_shape().ndims)) 64 reduced_losses = math_ops.reduce_sum(losses, axis=axis) 69 def _safe_mean(losses, num_present): argument 80 total_loss = math_ops.reduce_sum(losses) 85 def compute_weighted_loss(losses, weights=1.0, scope=None): argument 101 with ops.name_scope(scope, "weighted_loss", [losses, weights]): 102 losses = ops.convert_to_tensor(losses) 103 input_dtype = losses.dtype 104 losses = math_ops.cast(losses, dtypes.float32) [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | losses_utils.py | 150 def _safe_mean(losses, num_present): argument 161 total_loss = math_ops.reduce_sum(losses) 165 def _num_elements(losses): argument 167 with ops.name_scope(None, 'num_elements', values=[losses]) as scope: 168 return math_ops.cast(array_ops.size(losses, name=scope), dtype=losses.dtype) 185 def compute_weighted_loss(losses, argument 209 with ops.name_scope(name, 'weighted_loss', (losses, sample_weight)): 211 losses, _, sample_weight = squeeze_or_expand_dimensions( 212 losses, None, sample_weight) 213 losses = ops.convert_to_tensor(losses) [all …]
|
/external/tensorflow/tensorflow/python/keras/ |
D | losses_test.py | 38 ALL_LOSSES = [keras.losses.mean_squared_error, 39 keras.losses.mean_absolute_error, 40 keras.losses.mean_absolute_percentage_error, 41 keras.losses.mean_squared_logarithmic_error, 42 keras.losses.squared_hinge, 43 keras.losses.hinge, 44 keras.losses.categorical_crossentropy, 45 keras.losses.binary_crossentropy, 46 keras.losses.kullback_leibler_divergence, 47 keras.losses.poisson, [all …]
|
/external/tensorflow/tensorflow/python/ops/losses/ |
D | losses_impl.py | 32 from tensorflow.python.ops.losses import util 81 def _safe_mean(losses, num_present): argument 92 total_loss = math_ops.reduce_sum(losses) 96 def _num_present(losses, weights, per_batch=False): argument 121 return _num_elements(losses) 122 with ops.name_scope(None, "num_present", (losses, weights)) as scope: 128 present = weights_broadcast_ops.broadcast_weights(present, losses) 138 def _num_elements(losses): argument 140 with ops.name_scope(None, "num_elements", values=[losses]) as scope: 141 return math_ops.cast(array_ops.size(losses, name=scope), dtype=losses.dtype) [all …]
|
D | util.py | 81 losses = get_regularization_losses(scope) 82 if losses: 83 return math_ops.add_n(losses, name=name) 109 losses = get_losses() 111 losses += get_regularization_losses() 112 return math_ops.add_n(losses, name=name)
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.losses.pbtxt | 1 path: "tensorflow.losses" 9 …eduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \'losses\', \'weighted_sum_… 13 …argspec: "args=[\'loss\', \'loss_collection\'], varargs=None, keywords=None, defaults=[\'losses\']… 17 …args=[\'losses\', \'weights\', \'scope\', \'loss_collection\', \'reduction\'], varargs=None, keywo… 21 …], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'None\', \'losses\', \'weighted_sum_… 25 …s=[\'scope\', \'loss_collection\'], varargs=None, keywords=None, defaults=[\'None\', \'losses\'], " 41 …eduction\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \'losses\', \'weighted_sum_… 45 …'], varargs=None, keywords=None, defaults=[\'1.0\', \'1.0\', \'None\', \'losses\', \'weighted_sum_… 49 …, varargs=None, keywords=None, defaults=[\'1.0\', \'1e-07\', \'None\', \'losses\', \'weighted_sum_… 53 …e\', \'loss_collection\'], varargs=None, keywords=None, defaults=[\'1.0\', \'None\', \'losses\'], " [all …]
|
/external/tensorflow/tensorflow/contrib/kernel_methods/python/ |
D | losses_test.py | 23 from tensorflow.contrib.kernel_methods.python import losses 39 _ = losses.sparse_multiclass_hinge_loss(labels, logits) 47 _ = losses.sparse_multiclass_hinge_loss(labels, logits) 56 _ = losses.sparse_multiclass_hinge_loss(labels, logits, weights) 64 _ = losses.sparse_multiclass_hinge_loss(labels, logits) 72 _ = losses.sparse_multiclass_hinge_loss(labels, logits, weights=None) 81 _ = losses.sparse_multiclass_hinge_loss(labels, logits, weights) 90 _ = losses.sparse_multiclass_hinge_loss(labels, logits, weights) 98 loss = losses.sparse_multiclass_hinge_loss(labels, logits) 108 loss = losses.sparse_multiclass_hinge_loss(labels, logits) [all …]
|
/external/tensorflow/tensorflow/contrib/gan/python/losses/python/ |
D | losses_impl.py | 50 from tensorflow.python.ops.losses import losses 51 from tensorflow.python.ops.losses import util 83 reduction=losses.Reduction.SUM_BY_NONZERO_WEIGHTS, 109 loss = losses.compute_weighted_loss( 125 reduction=losses.Reduction.SUM_BY_NONZERO_WEIGHTS, 157 loss_on_generated = losses.compute_weighted_loss( 160 loss_on_real = losses.compute_weighted_loss( 185 reduction=losses.Reduction.SUM_BY_NONZERO_WEIGHTS, 228 loss_on_generated = losses.softmax_cross_entropy( 232 loss_on_real = losses.softmax_cross_entropy( [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_xent_test.py | 54 losses = np.array(self._SigmoidCrossEntropyWithLogits(x, y)).reshape(*sizes) 55 return logits, targets, losses 69 logits, targets, losses = self._Inputs(dtype=dtype) 72 np_loss = np.array(losses).astype(np.float32) 80 logits, targets, losses = self._Inputs(dtype=dtype, sizes=[2, 2, 2]) 83 np_loss = np.array(losses).astype(np.float32) 133 losses = np.array(self._WeightedCrossEntropy(x, y, q)).reshape(*sizes) 134 return logits, targets, q, losses 147 logits, targets, pos_weight, losses = self._Inputs(dtype=dtypes.float32) 150 np_loss = np.array(losses).astype(np.float32) [all …]
|
/external/tensorflow/tensorflow/contrib/losses/ |
D | README.md | 1 # TensorFlow contrib losses. 5 This module is deprecated. Instructions for updating: Use tf.losses instead. 7 ## losses section in TensorFlow contrib losses. 9 Note: By default all the losses are collected into the GraphKeys.LOSSES collection. 22 the batch. The result of each loss is a scalar average of all sample losses with 26 probability distribution (i.e., `[0.0, 1.0]`). `target` for losses taking
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_optimizer.py | 24 from tensorflow.python.ops.losses import losses 36 reduction=losses.Reduction.MEAN, 53 if reduction not in (losses.Reduction.SUM, losses.Reduction.MEAN): 133 if num_shards > 1 and self._reduction == losses.Reduction.MEAN:
|
/external/tensorflow/tensorflow/contrib/training/python/training/ |
D | training_test.py | 35 from tensorflow.python.ops.losses import losses 99 loss = losses.log_loss(tf_labels, tf_predictions) 116 loss = losses.log_loss(tf_labels, tf_predictions) 150 loss = losses.log_loss(tf_labels, tf_predictions) 183 loss = losses.log_loss(tf_labels, tf_predictions) 206 loss = losses.log_loss(tf_labels, tf_predictions) 243 losses.log_loss(tf_labels, tf_predictions) 244 total_loss = losses.get_total_loss() 279 losses.log_loss(tf_labels, tf_predictions) 280 total_loss = losses.get_total_loss() [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.losses.-k-l-divergence.pbtxt | 1 path: "tensorflow.losses.KLDivergence" 3 is_instance: "<class \'tensorflow.python.keras.losses.KLDivergence\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.losses.-hinge.pbtxt | 1 path: "tensorflow.losses.Hinge" 3 is_instance: "<class \'tensorflow.python.keras.losses.Hinge\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.losses.-mean-squared-error.pbtxt | 1 path: "tensorflow.losses.MeanSquaredError" 3 is_instance: "<class \'tensorflow.python.keras.losses.MeanSquaredError\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.losses.-mean-absolute-error.pbtxt | 1 path: "tensorflow.losses.MeanAbsoluteError" 3 is_instance: "<class \'tensorflow.python.keras.losses.MeanAbsoluteError\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.losses.-poisson.pbtxt | 1 path: "tensorflow.losses.Poisson" 3 is_instance: "<class \'tensorflow.python.keras.losses.Poisson\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.losses.-mean-absolute-percentage-error.pbtxt | 1 path: "tensorflow.losses.MeanAbsolutePercentageError" 3 is_instance: "<class \'tensorflow.python.keras.losses.MeanAbsolutePercentageError\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.losses.-categorical-hinge.pbtxt | 1 path: "tensorflow.losses.CategoricalHinge" 3 is_instance: "<class \'tensorflow.python.keras.losses.CategoricalHinge\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.losses.-squared-hinge.pbtxt | 1 path: "tensorflow.losses.SquaredHinge" 3 is_instance: "<class \'tensorflow.python.keras.losses.SquaredHinge\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.losses.-mean-squared-logarithmic-error.pbtxt | 1 path: "tensorflow.losses.MeanSquaredLogarithmicError" 3 is_instance: "<class \'tensorflow.python.keras.losses.MeanSquaredLogarithmicError\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.losses.-log-cosh.pbtxt | 1 path: "tensorflow.losses.LogCosh" 3 is_instance: "<class \'tensorflow.python.keras.losses.LogCosh\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|
D | tensorflow.keras.losses.-categorical-crossentropy.pbtxt | 1 path: "tensorflow.keras.losses.CategoricalCrossentropy" 3 is_instance: "<class \'tensorflow.python.keras.losses.CategoricalCrossentropy\'>" 4 is_instance: "<class \'tensorflow.python.keras.losses.LossFunctionWrapper\'>" 5 is_instance: "<class \'tensorflow.python.keras.losses.Loss\'>"
|