Home
last modified time | relevance | path

Searched refs:minibatch (Results 1 – 25 of 27) sorted by relevance

12

/external/tensorflow/tensorflow/contrib/gan/python/eval/python/
Dsliced_wasserstein_test.py39 def np_pyr_down(minibatch): # matches cv2.pyrDown() argument
40 assert minibatch.ndim == 4
42 minibatch,
46 def np_pyr_up(minibatch): # matches cv2.pyrUp() argument
47 assert minibatch.ndim == 4
48 s = minibatch.shape
49 res = np.zeros((s[0], s[1], s[2] * 2, s[3] * 2), minibatch.dtype)
50 res[:, :, ::2, ::2] = minibatch
56 def np_laplacian_pyramid(minibatch, num_levels): argument
58 pyramid = [minibatch.astype('f').copy()]
/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_AddManySparseToTensorsMap.pbtxt6 2-D. The `indices` of the minibatch `SparseTensor`.
13 1-D. The `values` of the minibatch `SparseTensor`.
19 1-D. The `shape` of the minibatch `SparseTensor`.
20 The minibatch size `N == sparse_shape[0]`.
43 summary: "Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles."
50 An `N`-minibatch of `SparseTensor` objects is represented as a `SparseTensor`
52 the minibatch size `N == sparse_shape[0]`.
55 dimension is treated as the minibatch dimension. Elements of the `SparseTensor`
60 The `SparseTensor` values can then be read out as part of a minibatch by passing
Dapi_def_SerializeManySparse.pbtxt6 2-D. The `indices` of the minibatch `SparseTensor`.
12 1-D. The `values` of the minibatch `SparseTensor`.
18 1-D. The `shape` of the minibatch `SparseTensor`.
28 summary: "Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object."
31 is treated as the minibatch dimension. Elements of the `SparseTensor`
36 The minibatch size `N` is extracted from `sparse_shape[0]`.
Dapi_def_TakeManySparseFromTensorsMap.pbtxt13 2-D. The `indices` of the minibatch `SparseTensor`.
19 1-D. The `values` of the minibatch `SparseTensor`.
25 1-D. The `shape` of the minibatch `SparseTensor`.
52 `N` is the minibatch size and the rows correspond to the output handles of
61 for the corresponding dimensions. Its first shape value is `N`, the minibatch
Dapi_def_DeserializeManySparse.pbtxt16 summary: "Deserialize and concatenate `SparseTensors` from a serialized minibatch."
19 `N` is the minibatch size and the rows correspond to packed outputs of
27 for the corresponding dimensions. Its first shape value is `N`, the minibatch
Dapi_def_ParseExample.pbtxt71 of elements of length D1 * .... * DN, across all minibatch entries
72 in the input. Any minibatch entry with less than M blocks of elements of
Dapi_def_SparseSoftmaxCrossEntropyWithLogits.pbtxt13 This is the label for the given minibatch entry.
Dapi_def_DecodeProtoV2.pbtxt78 minibatch. (The shape is also padded by one to prevent zero-sized
80 minibatch can be found in the `sizes` output. In many cases the output
Dapi_def_AddSparseToTensorsMap.pbtxt50 The `SparseTensor` can then be read out as part of a minibatch by passing
Dapi_def_PaddingFIFOQueueV2.pbtxt56 size of any given element in the minibatch. See below for details.
Dapi_def_PaddingFIFOQueue.pbtxt54 size of any given element in the minibatch. See below for details.
Dapi_def_ExperimentalParseExampleDataset.pbtxt52 minibatch elements smaller than the maximum number of blocks for the
Dapi_def_TryRpc.pbtxt120 will contain valid response values for those minibatch entries whose RPCs did
/external/tensorflow/tensorflow/contrib/training/python/training/
Dsampling_ops.py121 minibatch = input_ops.maybe_batch(
129 if isinstance(minibatch, ops.Tensor):
130 minibatch = [minibatch]
132 return minibatch
/external/tensorflow/tensorflow/contrib/gan/python/features/python/
Dvirtual_batchnorm_test.py48 minibatch = array_ops.zeros([5, 3, 16, 3, 15])
50 vbn(minibatch)
180 minibatch = array_ops.stack([fixed_example] + examples)
181 vbn_minibatch = vbn(minibatch)
/external/tensorflow/tensorflow/core/kernels/
Dserialize_sparse_op.cc227 sparse::GroupIterable minibatch = input_st.group({0}); in Compute() local
228 for (const auto& subset : minibatch) { in Compute()
Dsparse_tensors_map_ops.cc281 sparse::GroupIterable minibatch = input_st.group({0}); in Compute() local
282 for (const auto& subset : minibatch) { in Compute()
/external/tensorflow/tensorflow/core/util/
Dexample_proto_fast_parsing.cc1034 auto first_example_of_minibatch = [&](size_t minibatch) -> size_t { in FastParseExample() argument
1035 return (serialized.size() * minibatch) / num_minibatches; in FastParseExample()
1050 auto ProcessMiniBatch = [&](size_t minibatch) { in FastParseExample() argument
1051 sparse_buffers[minibatch].resize(config.sparse.size()); in FastParseExample()
1052 varlen_dense_buffers[minibatch].resize(config.dense.size()); in FastParseExample()
1053 size_t start = first_example_of_minibatch(minibatch); in FastParseExample()
1054 size_t end = first_example_of_minibatch(minibatch + 1); in FastParseExample()
1060 status_of_minibatch[minibatch] = FastParseSerializedExample( in FastParseExample()
1064 &varlen_dense_buffers[minibatch], &sparse_buffers[minibatch], stats); in FastParseExample()
1065 if (!status_of_minibatch[minibatch].ok()) break; in FastParseExample()
/external/tensorflow/tensorflow/examples/udacity/
D2_fullyconnected.ipynb436 " # at run time with a training minibatch.\n",
520 " # Generate a minibatch.\n",
523 " # Prepare a dictionary telling the session where to feed the minibatch.\n",
/external/tensorflow/tensorflow/core/protobuf/tpu/
Doptimization_parameters.proto90 // table, even for entries that are not used in the current minibatch
239 // once per minibatch.
/external/tensorflow/tensorflow/stream_executor/cuda/
Dcudnn_6_0.inc1483 const int minibatch,
1489 return func_ptr(rnnDesc, minibatch, dataType, plan);
Dcudnn_7_0.inc1617 const int minibatch,
1623 return func_ptr(rnnDesc, minibatch, dataType, plan);
Dcudnn_7_3.inc1779 const int minibatch,
1785 return func_ptr(rnnDesc, minibatch, dataType, plan);
Dcudnn_7_1.inc1779 const int minibatch,
1785 return func_ptr(rnnDesc, minibatch, dataType, plan);
Dcudnn_7_4.inc1912 const int minibatch,
1918 return func_ptr(rnnDesc, minibatch, dataType, plan);

12