/external/tensorflow/tensorflow/lite/kernels/ |
D | comparisons_test.cc | 96 ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_BOOL, in TEST() local 98 model.PopulateTensor<bool>(model.input1(), {true, false, true, false}); in TEST() 99 model.PopulateTensor<bool>(model.input2(), {true, true, false, false}); in TEST() 100 model.Invoke(); in TEST() 102 EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, false, true)); in TEST() 103 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); in TEST() 107 ComparisonOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, TensorType_FLOAT32, in TEST() local 109 model.PopulateTensor<float>(model.input1(), {0.1, 0.9, 0.7, 0.3}); in TEST() 110 model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.6, 0.5}); in TEST() 111 model.Invoke(); in TEST() [all …]
|
D | pack_test.cc | 56 PackOpModel<float> model({TensorType_FLOAT32, {2}}, 0, 3); in TEST() local 57 model.SetInput(0, {1, 4}); in TEST() 58 model.SetInput(1, {2, 5}); in TEST() 59 model.SetInput(2, {3, 6}); in TEST() 60 model.Invoke(); in TEST() 61 EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 2)); in TEST() 62 EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 4, 2, 5, 3, 6})); in TEST() 66 PackOpModel<float> model({TensorType_FLOAT32, {2}}, 1, 3); in TEST() local 67 model.SetInput(0, {1, 4}); in TEST() 68 model.SetInput(1, {2, 5}); in TEST() [all …]
|
D | mirror_pad_test.cc | 53 BaseMirrorPadOpModel<int> model( in TEST() local 56 model.PopulateTensor<int>(model.input_tensor_id(), {1, 2, 3, 4, 5, 6}); in TEST() 57 model.PopulateTensor<int>(model.padding_matrix_tensor_id(), {0, 0, 0, 0}); in TEST() 58 model.Invoke(); in TEST() 59 EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6})); in TEST() 63 BaseMirrorPadOpModel<int> model( in TEST() local 66 model.PopulateTensor<int>(model.input_tensor_id(), {1, 2, 3, 4, 5, 6}); in TEST() 67 model.PopulateTensor<int>(model.padding_matrix_tensor_id(), {0, 1, 0, 1}); in TEST() 68 model.Invoke(); in TEST() 69 EXPECT_THAT(model.GetOutput(), in TEST() [all …]
|
D | reverse_test.cc | 54 ReverseOpModel<float> model({TensorType_FLOAT32, {4}}, in TEST() local 56 model.PopulateTensor<float>(model.input(), {1, 2, 3, 4}); in TEST() 57 model.PopulateTensor<int32_t>(model.axis(), {0}); in TEST() 58 model.Invoke(); in TEST() 60 EXPECT_THAT(model.GetOutputShape(), ElementsAre(4)); in TEST() 61 EXPECT_THAT(model.GetOutput(), ElementsAreArray({4, 3, 2, 1})); in TEST() 65 ReverseOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}}, in TEST() local 67 model.PopulateTensor<float>(model.input(), in TEST() 70 model.PopulateTensor<int32_t>(model.axis(), {1}); in TEST() 71 model.Invoke(); in TEST() [all …]
|
D | select_test.cc | 60 SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4}, in TEST() local 63 model.PopulateTensor<bool>(model.input1(), {true, false, true, false}); in TEST() 64 model.PopulateTensor<bool>(model.input2(), {false, false, false, false}); in TEST() 65 model.PopulateTensor<bool>(model.input3(), {true, true, true, true}); in TEST() 66 model.Invoke(); in TEST() 68 EXPECT_THAT(model.GetOutput<bool>(), in TEST() 70 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1, 4})); in TEST() 74 SelectOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, {1, 1, 1, 4}, in TEST() local 77 model.PopulateTensor<bool>(model.input1(), {true, false, true, false}); in TEST() 78 model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.3, 0.4}); in TEST() [all …]
|
D | reverse_sequence_test.cc | 56 ReverseSequenceOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}}, in TEST() local 58 model.PopulateTensor<float>(model.input(), in TEST() 61 model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 2, 3, 3}); in TEST() 62 model.Invoke(); in TEST() 63 EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3, 2)); in TEST() 65 model.GetOutput(), in TEST() 71 ReverseSequenceOpModel<float> model({TensorType_FLOAT32, {4, 3, 2}}, in TEST() local 73 model.PopulateTensor<float>(model.input(), in TEST() 76 model.PopulateTensor<int32_t>(model.seq_lengths(), {3, 4}); in TEST() 77 model.Invoke(); in TEST() [all …]
|
D | arg_min_max_test.cc | 79 ArgMaxOpModel<int32_t> model({1, 1, 1, 4}, TensorType_FLOAT32, in TEST() local 81 model.PopulateTensor<float>(model.input(), {0.1, 0.9, 0.7, 0.3}); in TEST() 82 model.PopulateTensor<int>(model.axis(), {3}); in TEST() 83 model.Invoke(); in TEST() 85 EXPECT_THAT(model.GetOutput(), ElementsAreArray({1})); in TEST() 86 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1})); in TEST() 90 ArgMaxOpModel<int32_t> model({1, 1, 1, 4}, TensorType_UINT8, TensorType_INT32, in TEST() local 92 model.PopulateTensor<uint8_t>(model.input(), {1, 9, 7, 3}); in TEST() 93 model.PopulateTensor<int>(model.axis(), {3}); in TEST() 94 model.Invoke(); in TEST() [all …]
|
D | range_test.cc | 54 RangeOpModel<int32_t> model(TensorType_INT32); in TEST() local 55 model.PopulateTensor<int32_t>(model.start(), {0}); in TEST() 56 model.PopulateTensor<int32_t>(model.limit(), {4}); in TEST() 57 model.PopulateTensor<int32_t>(model.delta(), {1}); in TEST() 58 model.Invoke(); in TEST() 59 EXPECT_THAT(model.GetOutputShape(), ElementsAre(4)); in TEST() 60 EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, 2, 3)); in TEST() 64 RangeOpModel<int32_t> model(TensorType_INT32); in TEST() local 65 model.PopulateTensor<int32_t>(model.start(), {2}); in TEST() 66 model.PopulateTensor<int32_t>(model.limit(), {9}); in TEST() [all …]
|
D | floor_mod_test.cc | 52 FloorModModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 55 model.PopulateTensor<int32_t>(model.input1(), {10, 9, 11, 3}); in TEST() 56 model.PopulateTensor<int32_t>(model.input2(), {2, 2, 3, 4}); in TEST() 57 model.Invoke(); in TEST() 58 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); in TEST() 59 EXPECT_THAT(model.GetOutput(), ElementsAre(0, 1, 2, 3)); in TEST() 63 FloorModModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 66 model.PopulateTensor<int32_t>(model.input1(), {10, -9, -11, 7}); in TEST() 67 model.PopulateTensor<int32_t>(model.input2(), {2, 2, -3, -4}); in TEST() 68 model.Invoke(); in TEST() [all …]
|
D | pow_test.cc | 53 PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 56 model.PopulateTensor<int32_t>(model.input1(), {12, 2, 7, 8}); in TEST() 57 model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 1}); in TEST() 58 model.Invoke(); in TEST() 59 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1)); in TEST() 60 EXPECT_THAT(model.GetOutput(), ElementsAre(12, 4, 343, 8)); in TEST() 64 PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}}, in TEST() local 67 model.PopulateTensor<int32_t>(model.input1(), {0, 2, -7, 8}); in TEST() 68 model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 0}); in TEST() 69 model.Invoke(); in TEST() [all …]
|
D | one_hot_test.cc | 67 OneHotOpModel<float> model({3}, depth, TensorType_FLOAT32); in TEST() local 68 model.SetIndices({0, 1, 2}); in TEST() 69 model.Invoke(); in TEST() 71 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3})); in TEST() 72 EXPECT_THAT(model.GetOutput(), in TEST() 78 OneHotOpModel<int> model({3}, depth, TensorType_INT32); in TEST() local 79 model.SetIndices({0, 1, 2}); in TEST() 80 model.Invoke(); in TEST() 82 EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3})); in TEST() 83 EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0, 0, 1, 0, 0, 0, 1})); in TEST() [all …]
|
D | logical_test.cc | 66 LogicalOpModel model({1, 1, 1, 4}, {1, 1, 1, 4}, BuiltinOperator_LOGICAL_OR); in TEST() local 67 model.PopulateTensor<bool>(model.input1(), {true, false, false, true}); in TEST() 68 model.PopulateTensor<bool>(model.input2(), {true, false, true, false}); in TEST() 69 model.Invoke(); in TEST() 71 EXPECT_THAT(model.GetOutput(), ElementsAre(true, false, true, true)); in TEST() 72 EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1, 1, 4)); in TEST() 76 LogicalOpModel model({1, 1, 1, 4}, {1, 1, 1, 1}, BuiltinOperator_LOGICAL_OR); in TEST() local 77 model.PopulateTensor<bool>(model.input1(), {true, false, false, true}); in TEST() 78 model.PopulateTensor<bool>(model.input2(), {false}); in TEST() 79 model.Invoke(); in TEST() [all …]
|
D | unique_test.cc | 53 UniqueOpModel<float, int32_t> model({TensorType_FLOAT32, {1}}, in TEST() local 55 model.PopulateTensor<float>(model.input_tensor_id(), {5}); in TEST() 56 model.Invoke(); in TEST() 57 EXPECT_THAT(model.GetOutput(), ElementsAreArray({5})); in TEST() 58 EXPECT_THAT(model.GetIndexesOutput(), ElementsAreArray({0})); in TEST() 62 UniqueOpModel<float, int32_t> model({TensorType_FLOAT32, {8}}, in TEST() local 64 model.PopulateTensor<float>(model.input_tensor_id(), in TEST() 66 model.Invoke(); in TEST() 67 EXPECT_THAT(model.GetOutput(), ElementsAreArray({5, 2, 3, 51, 6, 72, 7, 8})); in TEST() 68 EXPECT_THAT(model.GetIndexesOutput(), in TEST() [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | sequential_test.py | 41 model = keras.models.Sequential() 42 model.add(keras.layers.Dense(1, input_dim=2)) 43 model.add(keras.layers.Dropout(0.3, name='dp')) 44 model.add(keras.layers.Dense(2, kernel_regularizer='l2', 46 self.assertEqual(len(model.layers), 3) 47 self.assertEqual(len(model.weights), 2 * 2) 48 self.assertEqual(model.get_layer(name='dp').name, 'dp') 52 model = keras.models.Sequential() 53 model.add(keras.Input(shape=(2,), name='input_layer')) 54 model.add(keras.layers.Dense(1)) [all …]
|
D | training_test.py | 65 def _do_test_compile_with_model_and_single_loss(self, model, loss): argument 66 model.compile(optimizer='adam', loss=loss) 67 self.assertEqual(model.loss, loss) 71 loss_list = [loss] * len(model.outputs) 73 self.assertEqual(len(model.loss_functions), len(loss_list)) 75 self.assertIsInstance(model.loss_functions[i], losses.LossFunctionWrapper) 77 self.assertEqual(model.loss_functions[i].fn, loss_list[i]) 78 self.assertAllEqual(model.loss_weights_list, [1.] * len(loss_list)) 85 model = testing_utils.get_small_sequential_mlp( 87 self._do_test_compile_with_model_and_single_loss(model, loss) [all …]
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
D | identify_lstm.cc | 28 Model* model, const Operator& op) { in FindOperator() argument 29 auto it = model->operators.begin(); in FindOperator() 30 for (; it != model->operators.end(); ++it) { in FindOperator() 38 bool ValidateSourceOp(const Model& model, const string& array_name, in ValidateSourceOp() argument 44 *source_op = GetOpWithOutput(model, array_name); in ValidateSourceOp() 62 bool MatchOperatorInputs(const Operator& op, const Model& model, in MatchOperatorInputs() argument 70 if (!ValidateSourceOp(model, op.inputs[0], op_type, connected_op)) { in MatchOperatorInputs() 81 bool MatchOperatorInputs(const Operator& op, const Model& model, in MatchOperatorInputs() argument 90 if (!ValidateSourceOp(model, op.inputs[0], a_op_type, a_op)) { in MatchOperatorInputs() 95 if (!ValidateSourceOp(model, op.inputs[1], b_op_type, b_op)) { in MatchOperatorInputs() [all …]
|
D | group_bidirectional_sequence_ops.cc | 31 Model* model, const Operator& op) { in FindOperator() argument 33 model->operators.begin(), model->operators.end(), in FindOperator() 37 bool MatchTwoUnpackOps(const Operator& op, const Model& model, in MatchTwoUnpackOps() argument 43 *fw_output = GetOpWithOutput(model, op.inputs[0]); in MatchTwoUnpackOps() 44 *bw_output = GetOpWithOutput(model, op.inputs[1]); in MatchTwoUnpackOps() 59 bool MatchDynamicBidirectionalSequenceOutputs(Operator* op, const Model& model, in MatchDynamicBidirectionalSequenceOutputs() argument 68 auto* reverse_output = GetOpWithOutput(model, op->inputs[1]); in MatchDynamicBidirectionalSequenceOutputs() 83 bool FindUnidirectionalSequenceOp(const Model& model, const Operator& output_op, in FindUnidirectionalSequenceOp() argument 88 op_it = GetOpWithOutput(model, output_op.inputs[0]); in FindUnidirectionalSequenceOp() 96 op_it = GetOpWithOutput(model, op_it->inputs[0]); in FindUnidirectionalSequenceOp() [all …]
|
D | propagate_array_data_types.cc | 27 void SetDataTypeForAllOutputs(Model* model, Operator* op, in SetDataTypeForAllOutputs() argument 30 model->GetArray(output).data_type = data_type; in SetDataTypeForAllOutputs() 35 ::tensorflow::Status PropagateArrayDataTypes::Run(Model* model, in Run() argument 39 auto it = model->operators.begin() + op_index; in Run() 44 if (!model->IsOptionalArray(input) && in Run() 45 model->GetArray(input).data_type == ArrayDataType::kNone) { in Run() 53 old_output_data_types[output] = model->GetArray(output).data_type; in Run() 60 SetDataTypeForAllOutputs(model, op, ArrayDataType::kFloat); in Run() 73 SetDataTypeForAllOutputs(model, op, ArrayDataType::kBool); in Run() 78 SetDataTypeForAllOutputs(model, op, ArrayDataType::kInt32); in Run() [all …]
|
/external/tensorflow/tensorflow/python/keras/ |
D | models.py | 53 def _clone_functional_model(model, input_tensors=None, share_weights=False): argument 79 if not isinstance(model, Model): 81 'to be a `Model` instance, got ', model) 82 if isinstance(model, Sequential): 85 'got a `Sequential` instance instead:', model) 92 for layer in model._input_layers: 110 original_input_layer = model._input_layers[i] 123 for x, y in zip(model.inputs, input_tensors): 127 depth_keys = list(model._nodes_by_depth.keys()) 130 nodes = model._nodes_by_depth[depth] [all …]
|
D | model_subclassing_test.py | 227 model = DummyModel() 228 model.compile('sgd', 'mse', run_eagerly=testing_utils.should_run_eagerly()) 229 model.fit(np.ones((10, 10)), np.ones((10, 1)), batch_size=2, epochs=2) 230 self.assertLen(model.layers, 2) 231 self.assertLen(model.trainable_variables, 4) 237 model = SimpleTestModel(num_classes=num_classes, 241 self.assertFalse(model.built, 'Model should not have been built') 242 self.assertFalse(model.weights, ('Model should have no weights since it ' 246 model.build(input_shape=tensor_shape.Dimension(input_dim)) 277 model = EmbedModel(100, 20) [all …]
|
/external/ImageMagick/PerlMagick/demo/ |
D | demo.pl | 16 $model=Image::Magick->new(); 17 $x=$model->ReadImage('model.gif'); 19 $model->Label('Magick'); 20 $model->Set(background=>'white'); 34 $example=$model->Clone(); 40 $example=$model->Clone(); 46 $example=$model->Clone(); 52 $example=$model->Clone(); 58 $example=$model->Clone(); 64 $example=$model->Clone(); [all …]
|
/external/ImageMagick/www/source/ |
D | examples.pl | 16 $model=Image::Magick->new(); 17 $x=$model->ReadImage('model.gif'); 19 $model->Label('Magick'); 20 $model->Set(background=>'white'); 34 $example=$model->Clone(); 40 $example=$model->Clone(); 46 $example=$model->Clone(); 52 $example=$model->Clone(); 58 $example=$model->Clone(); 64 $example=$model->Clone(); [all …]
|
/external/javaparser/javaparser-symbol-solver-testing/src/test/resources/javasymbolsolver_0_6_0/expected_output/java-symbol-solver-core/ |
D | com_github_javaparser_symbolsolver_javaparsermodel_contexts_MethodCallExprContext.txt | 4 …r.javaparsermodel.JavaParserFacade.get(com.github.javaparser.symbolsolver.model.resolution.TypeSol… 7 …().getGenericParameterByName(name) ==> com.github.javaparser.symbolsolver.model.typesystem.Referen… 8 …Line 66) typeOfScope.asReferenceType() ==> com.github.javaparser.symbolsolver.model.typesystem.Typ… 16 …on.Context.solveType(java.lang.String, com.github.javaparser.symbolsolver.model.resolution.TypeSol… 17 …Line 86) ref.isSolved() ==> com.github.javaparser.symbolsolver.model.resolution.SymbolReference.is… 18 …model.declarations.TypeDeclaration, java.lang.String, java.util.List<com.github.javaparser.symbols… 19 …Line 87) ref.getCorrespondingDeclaration() ==> com.github.javaparser.symbolsolver.model.resolution… 20 …Line 88) m.isSolved() ==> com.github.javaparser.symbolsolver.model.resolution.SymbolReference.isSo… 21 …Line 89) m.getCorrespondingDeclaration() ==> com.github.javaparser.symbolsolver.model.resolution.S… 22 …itList(com.github.javaparser.symbolsolver.model.resolution.TypeSolver, com.github.javaparser.symbo… [all …]
|
D | com_github_javaparser_symbolsolver_resolution_MethodResolutionLogic.txt | 6 …utionLogic.findCommonType(java.util.List<com.github.javaparser.symbolsolver.model.typesystem.Type>) 10 …model.declarations.MethodDeclaration, java.lang.String, java.util.List<com.github.javaparser.symbo… 12 …Line 70) method.getName() ==> com.github.javaparser.symbolsolver.model.declarations.Declaration.ge… 13 …Line 73) method.hasVariadicParameter() ==> com.github.javaparser.symbolsolver.model.declarations.M… 14 …Line 74) method.getNumberOfParams() ==> com.github.javaparser.symbolsolver.model.declarations.Meth… 15 …Line 75) method.getNumberOfParams() ==> com.github.javaparser.symbolsolver.model.declarations.Meth… 17 …Line 77) method.getLastParam().getType() ==> com.github.javaparser.symbolsolver.model.declarations… 18 …Line 77) method.getLastParam() ==> com.github.javaparser.symbolsolver.model.declarations.MethodLik… 20 …=> com.github.javaparser.symbolsolver.model.typesystem.Type.isAssignableBy(com.github.javaparser.s… 21 …Line 80) method.getTypeParameters() ==> com.github.javaparser.symbolsolver.model.declarations.Type… [all …]
|
/external/javaparser/javaparser-symbol-solver-testing/src/test/resources/javasymbolsolver_0_6_0/expected_output/java-symbol-solver-logic/ |
D | com_github_javaparser_symbolsolver_logic_InferenceContext.txt | 2 …Line 44) tp.getName() ==> com.github.javaparser.symbolsolver.model.declarations.TypeParameterDecla… 4 …ferenceVariableType.setCorrespondingTp(com.github.javaparser.symbolsolver.model.declarations.TypeP… 6 …Line 48) tp.getName() ==> com.github.javaparser.symbolsolver.model.declarations.TypeParameterDecla… 8 …Line 50) tp.getName() ==> com.github.javaparser.symbolsolver.model.declarations.TypeParameterDecla… 9 ….InferenceContext.placeInferenceVariables(com.github.javaparser.symbolsolver.model.typesystem.Type) 10 ….InferenceContext.placeInferenceVariables(com.github.javaparser.symbolsolver.model.typesystem.Type) 11 …spondance(com.github.javaparser.symbolsolver.model.typesystem.Type, com.github.javaparser.symbolso… 12 ….InferenceContext.placeInferenceVariables(com.github.javaparser.symbolsolver.model.typesystem.Type) 13 …Line 69) formalType.isReferenceType() ==> com.github.javaparser.symbolsolver.model.typesystem.Type… 14 …Line 69) actualType.isReferenceType() ==> com.github.javaparser.symbolsolver.model.typesystem.Type… [all …]
|