/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | head.py | 83 model_outputs = self.state_manager.define_loss( 87 model_outputs.loss) 88 return model_outputs 102 model_outputs = self.create_loss(features, mode) 105 model_outputs.loss, 108 loss=model_outputs.loss, 116 model_outputs = self.create_loss(features, mode) 119 for prediction_key, prediction_value in model_outputs.predictions.items(): 123 feature_keys.FilteringResults.TIMES, model_outputs.prediction_times) 126 model_outputs.end_state)) [all …]
|
D | state_management_test.py | 128 model_outputs = chainer.define_loss( 136 model_outputs.loss.eval() 137 outputs = model_outputs.loss.eval() 222 model_outputs = chainer.define_loss( 229 model_outputs.loss.eval() 230 returned_loss = model_outputs.loss.eval() 302 model_outputs = chainer.define_loss( 305 end_state = session.run(model_outputs.end_state)
|
D | ar_model.py | 804 model_outputs = self._process_window( 814 assert len(model_outputs.predictions) == 3 815 assert "mean" in model_outputs.predictions 816 assert "covariance" in model_outputs.predictions 817 assert "observed" in model_outputs.predictions 820 iteration_number, model_outputs.loss), 822 iteration_number, model_outputs.predictions["mean"]), 824 iteration_number, model_outputs.predictions["covariance"]))
|
D | test_utils.py | 127 model_outputs = eval_state_manager.define_loss( 135 true_param_loss = model_outputs.loss.eval(feed_dict=true_parameters)
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/state_space_models/ |
D | state_space_model_test.py | 138 model_outputs = random_model.get_batch_loss( 151 model_outputs.loss.eval() 266 model_outputs = random_model.get_batch_loss( 280 (model_outputs.end_state, model_outputs.predictions)) 316 model_outputs = state_manager.define_loss( 323 model_outputs.loss.eval() 325 priors_from_time) = model_outputs.end_state 327 outputs = (model_outputs.loss, posteriors, 328 model_outputs.predictions) 398 model_outputs = passthrough.define_loss( [all …]
|
/external/tensorflow/tensorflow/lite/tools/accuracy/ilsvrc/ |
D | imagenet_topk_eval.cc | 47 const std::vector<Tensor>& model_outputs, const Tensor& ground_truth) { in ComputeEval() argument 48 if (model_outputs.size() != 1) { in ComputeEval() 50 model_outputs.size()); in ComputeEval() 52 const Tensor& output = model_outputs[0]; in ComputeEval()
|
D | imagenet_topk_eval.h | 65 Status ComputeEval(const std::vector<Tensor>& model_outputs,
|
/external/tensorflow/tensorflow/lite/tools/accuracy/ |
D | eval_pipeline_test.cc | 36 Status ComputeEval(const std::vector<Tensor>& model_outputs, in ComputeEval() argument 38 model_outputs_ = model_outputs; in ComputeEval() 45 std::vector<Tensor> model_outputs() { return model_outputs_; } in model_outputs() function in tensorflow::metrics::__anon7671d8850111::NoOpAccuracyEval 73 auto outputs = accuracy_eval.model_outputs(); in TEST()
|
D | accuracy_eval_stage.h | 44 virtual Status ComputeEval(const std::vector<Tensor>& model_outputs,
|
D | eval_pipeline_builder_test.cc | 75 Status ComputeEval(const std::vector<Tensor>& model_outputs, in ComputeEval() argument
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | network.py | 1115 model_outputs = [] 1122 model_outputs.append( 1124 model_outputs = nest.pack_sequence_as(self._nested_outputs, model_outputs) 1126 if not nest.is_sequence(model_outputs): 1127 model_outputs = [model_outputs] 1128 model_outputs = tf_utils.convert_inner_node_data(model_outputs) 1129 config['output_layers'] = model_outputs
|
/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
D | parse_testdata.cc | 195 int model_outputs = interpreter->outputs().size(); in CheckOutputs() local 196 TF_LITE_ENSURE_EQ(context, model_outputs, example.outputs.size()); in CheckOutputs()
|
/external/tensorflow/tensorflow/lite/testing/ |
D | parse_testdata.cc | 192 int model_outputs = interpreter->outputs().size(); in CheckOutputs() local 193 TF_LITE_ENSURE_EQ(context, model_outputs, example.outputs.size()); in CheckOutputs()
|