/external/tensorflow/tensorflow/python/kernel_tests/ |
D | parameterized_truncated_normal_op_test.py | 93 moments = [0.0] * (max_moment + 1) 96 for k in range(len(moments)): 97 moments[k] += value 99 for i in range(len(moments)): 100 moments[i] /= len(samples) 101 return moments 132 moments = calculate_moments(samples, self.max_moment) 135 for i in range(1, len(moments)): 137 z_test(moments, expected_moments, i, num_samples), self.z_limit)
|
/external/tensorflow/tensorflow/core/lib/random/ |
D | random_distributions_test.cc | 83 std::vector<double> moments(max_moments + 1); in CheckSamplesMoments() local 84 double* const moments_data = &moments[0]; in CheckSamplesMoments() 106 moments[i] /= moments_sample_count[i]; in CheckSamplesMoments() 130 fabs((moments[i] - moments_i_mean) / sqrt(total_variance)); in CheckSamplesMoments() 136 << " measured moments: " << moments[i] in CheckSamplesMoments()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_BatchNormWithGlobalNormalization.pbtxt | 13 This is the first output from tf.nn.moments, 21 This is the second output from tf.nn.moments,
|
D | api_def_BatchNormWithGlobalNormalizationGrad.pbtxt | 13 This is the first output from tf.nn.moments, 21 This is the second output from tf.nn.moments,
|
D | api_def_QuantizedBatchNormWithGlobalNormalization.pbtxt | 25 This is the first output from tf.nn.moments, 45 This is the second output from tf.nn.moments,
|
/external/tensorflow/tensorflow/contrib/nn/python/ops/ |
D | alpha_dropout_test.py | 39 t_mean, t_std = nn_impl.moments(t, axes=[0, 1]) 40 output_mean, output_std = nn_impl.moments(output, axes=[0, 1])
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | normalization.py | 155 mean, variance = nn.moments(inputs, moments_axes, keep_dims=True) 365 mean, variance = nn.moments(inputs, moments_axes, keep_dims=True)
|
D | layers.py | 774 mean, variance = nn.moments(inputs, moments_axes, keep_dims=True) 778 mean, variance = nn.moments(inputs, moments_axes) 2313 mean, variance = nn.moments(inputs, norm_axes, keep_dims=True)
|
/external/tensorflow/tensorflow/contrib/gan/python/features/python/ |
D | virtual_batchnorm_test.py | 59 mom_mean, mom_var = nn.moments(tensors, axes) 82 mom_mean, mom_variance = nn.moments(full_batch, reduction_axes)
|
/external/tensorflow/tensorflow/contrib/autograph/examples/benchmarks/ |
D | cartpole_benchmark.py | 162 mean, variance = tf.nn.moments(discounted_rewards, [0]) 347 mean, variance = tf.nn.moments(discounted_rewards, [0])
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/ |
D | batch_normalization.py | 269 _, v = nn.moments(y, axes=reduction_axes, keep_dims=True)
|
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/ |
D | classifier_metrics_impl.py | 630 m, var = nn_impl.moments(real_activations, axes=[0]) 631 m_w, var_w = nn_impl.moments(generated_activations, axes=[0])
|
D | sliced_wasserstein_impl.py | 128 mean, variance = nn.moments(patches, [1, 2, 3], keep_dims=True)
|
/external/tensorflow/tensorflow/python/keras/ |
D | optimizers.py | 196 moments = [K.zeros(shape) for shape in shapes] 197 self.weights = [self.iterations] + moments 198 for p, g, m in zip(params, grads, moments):
|
D | backend_test.py | 1742 mean, var = nn.moments(x, (0, 1), None, None, False) 1750 mean, var = nn.moments(x, (0, 1, 2), None, None, False) 1758 mean, var = nn.moments(x, (0, 2, 3), None, None, False)
|
/external/ImageMagick/MagickCore/ |
D | statistic.c | 1712 *moments; in GetImagePerceptualHash() local 1738 moments=GetImageMoments(hash_image,exception); in GetImagePerceptualHash() 1742 if (moments == (ChannelMoments *) NULL) in GetImagePerceptualHash() 1747 (-MagickLog10(moments[channel].invariant[j])); in GetImagePerceptualHash() 1748 moments=(ChannelMoments *) RelinquishMagickMemory(moments); in GetImagePerceptualHash()
|
/external/tensorflow/tensorflow/python/ops/ |
D | batch_norm_benchmark.py | 99 mean, variance = nn_impl.moments(tensor, axes, keep_dims=keep_dims)
|
D | nn_impl.py | 928 def moments( function 1025 return moments(x=x, axes=axes, shift=shift, name=name, keep_dims=keepdims)
|
D | nn_fused_batchnorm_test.py | 101 mean, var = nn_impl.moments(
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | normalization.py | 566 return nn.moments(inputs, reduction_axes, keep_dims=keep_dims) 975 mean, variance = nn.moments(inputs, self.norm_axis, keep_dims=True)
|
/external/python/cpython2/Doc/library/ |
D | htmllib.rst | 53 The parser will call these at appropriate moments: :meth:`start_tag` or
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.nn.pbtxt | 228 name: "moments"
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | math_utils.py | 893 mean, variance = nn.moments(
|
/external/ImageMagick/Magick++/lib/Magick++/ |
D | Image.h | 1093 ImageMoments moments(void) const;
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.nn.pbtxt | 280 name: "moments"
|