/external/tensorflow/tensorflow/python/ops/distributions/ |
D | multinomial.py | 207 self._mean_val = self._total_count[..., array_ops.newaxis] * self._probs 254 n_draws[..., array_ops.newaxis], dtype=self.logits.dtype) * self.logits 263 x = random_ops.multinomial(logits[array_ops.newaxis, ...], n_draw, 296 self.total_count)[..., array_ops.newaxis] 298 -math_ops.matmul(self._mean_val[..., array_ops.newaxis], 299 p[..., array_ops.newaxis, :]), # outer product 304 self.total_count)[..., array_ops.newaxis]
|
D | dirichlet.py | 264 return self.concentration / self.total_concentration[..., array_ops.newaxis] 269 -math_ops.matmul(x[..., array_ops.newaxis], 270 x[..., array_ops.newaxis, :]), # outer prod 280 return math_ops.rsqrt(1. + self.total_concentration[..., array_ops.newaxis]) 290 self.total_concentration[..., array_ops.newaxis] - k)
|
D | dirichlet_multinomial.py | 295 self.total_concentration[..., array_ops.newaxis]) 318 -math_ops.matmul(x[..., array_ops.newaxis], 319 x[..., array_ops.newaxis, :]), # outer prod 331 c0 = self.total_concentration[..., array_ops.newaxis]
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | vector_diffeomixture.py | 114 (normal_loc[..., array_ops.newaxis] + 115 np.sqrt(2.) * normal_scale[..., array_ops.newaxis] * grid), 704 p[..., k, array_ops.newaxis]) 708 (p[..., k, array_ops.newaxis] * math_ops.square(s.multiplier))) 710 diag = add(diag, (p[..., k, array_ops.newaxis] * 713 x = (p[..., k, array_ops.newaxis, array_ops.newaxis] * 728 diag *= v[..., array_ops.newaxis] 730 full *= v[..., array_ops.newaxis] 737 return scale_identity_multiplier[..., array_ops.newaxis] * ones 768 p = p[..., array_ops.newaxis, :] # Assuming event.ndims=1. [all …]
|
D | poisson_lognormal.py | 92 grid = (loc[..., array_ops.newaxis] 93 + np.sqrt(2.) * scale[..., array_ops.newaxis] * grid) 404 + self.distribution.log_prob(x[..., array_ops.newaxis])), 439 - self._mean()[..., array_ops.newaxis])), 442 self.mixture_distribution.logits[..., array_ops.newaxis] + v,
|
D | distribution_util.py | 166 tril_diag += scale_identity_multiplier[..., array_ops.newaxis] 248 scale_diag += scale_identity_multiplier[..., array_ops.newaxis] 315 event_shape = event_size[array_ops.newaxis]
|
D | mvn_linear_operator.py | 349 b_inv_a = (a.stddev() / b.stddev())[..., array_ops.newaxis] 358 (b.mean() - a.mean())[..., array_ops.newaxis]))))
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/ |
D | ordered.py | 81 return (input_shape[-1])[..., array_ops.newaxis] 96 return (output_shape[-1])[..., array_ops.newaxis] 100 y0 = x[..., 0, array_ops.newaxis] 106 x0 = y[..., 0, array_ops.newaxis]
|
D | softmax_centered.py | 88 return (input_shape[-1] + 1)[..., array_ops.newaxis] 104 return (output_shape[-1] - 1)[..., array_ops.newaxis] 133 log_normalization = (-x[..., -1])[..., array_ops.newaxis]
|
D | cholesky_outer_product.py | 181 exponents[..., array_ops.newaxis]), 218 x = x[array_ops.newaxis, :]
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
D | linear_operator_kronecker.py | 333 output = output[array_ops.newaxis, ...] 450 output = output[array_ops.newaxis, ...] 507 diag_part = diag_part[..., :, array_ops.newaxis] 508 op_diag_part = operator.diag_part()[..., array_ops.newaxis, :] 527 ..., :, array_ops.newaxis, :, array_ops.newaxis] 530 ..., array_ops.newaxis, :, array_ops.newaxis, :]
|
D | linalg_impl.py | 288 array_ops.newaxis, 289 array_ops.newaxis]) 306 array_ops.newaxis, 307 array_ops.newaxis])
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | image_ops_test.py | 423 out = sess.run(resized, {image: image_np[np.newaxis, :, :, np.newaxis]}) 426 expected[np.newaxis, :, :, np.newaxis], out, rtol=2e-4, atol=2e-4) 428 self.assertAllClose(expected[np.newaxis, :, :, np.newaxis], out) 531 out = sess.run(resized, {image: image_np[np.newaxis, :, :, np.newaxis]}) 534 expected[np.newaxis, :, :, np.newaxis], out, rtol=0.03, atol=0.1) 536 self.assertAllClose(expected[np.newaxis, :, :, np.newaxis], out) 554 out = sess.run(resized, {grads: grads_np[np.newaxis, :, :, np.newaxis]}) 555 self.assertAllCloseAccordingToType(expected[np.newaxis, :, :, np.newaxis], 729 out = sess.run(resized, {image: input_image[:, :, :, np.newaxis]}) 730 self.assertAllClose(expected[:, :, :, np.newaxis], out)
|
D | gather_nd_op_test.py | 112 np.vstack((params[np.newaxis, :], params[np.newaxis, :])),
|
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/ |
D | sliced_wasserstein_test.py | 43 gaussian_filter[np.newaxis, np.newaxis, :, :], 53 gaussian_filter[np.newaxis, np.newaxis, :, :] * 4.0,
|
/external/tensorflow/tensorflow/python/kernel_tests/linalg/ |
D | linear_operator_kronecker_test.py | 41 product = product[..., array_ops.newaxis, :, array_ops.newaxis] 42 factor_to_mul = factor[..., array_ops.newaxis, :, array_ops.newaxis, :]
|
/external/tensorflow/tensorflow/contrib/training/python/training/ |
D | batch_sequences_with_states_test.py | 233 self.sequences["seq1"][np.newaxis, 0:num_unroll, :], 236 self.sequences["seq2"][np.newaxis, 0:num_unroll, :, :], 239 self.sequences["seq1"][np.newaxis, num_unroll:self.value_length, :], 242 self.sequences["seq2"][np.newaxis, num_unroll:self.value_length, :, :], 368 self.sequences["seq1"][np.newaxis, 0:num_unroll, :], 371 self.sequences["seq2"][np.newaxis, 0:num_unroll, :, :], 376 self.sequences["seq1"][np.newaxis, num_unroll:self.value_length, :], 385 self.sequences["seq2"][np.newaxis, num_unroll:self.value_length, :],
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | ctc_decoder_ops_test.py | 144 ], np.float32)[:, np.newaxis] 198 input_prob_matrix_0[t, :][np.newaxis, :] for t in range(seq_len_0) 212 np.float32)[np.newaxis, :]
|
D | array_ops_test.py | 666 ones[array_ops.newaxis, :, 0].eval( 707 _ = checker[np.newaxis] 709 _ = checker[..., np.newaxis] 711 _ = checker[..., np.newaxis, :] 712 _ = checker[:, ..., np.newaxis, :, :] 714 _ = checker[:, :, np.newaxis, :, 2::-1] 716 _ = checker[np.newaxis, ..., np.newaxis] 737 _ = checker[np.newaxis, ..., np.newaxis] 741 _ = checker[np.newaxis, 1:] 807 self.tensorShapeEqual(a[3:5, :, array_ops.newaxis, 50:3,], [all …]
|
/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_getitem.py | 137 if row_key is array_ops.newaxis: 246 if column_key is array_ops.newaxis: 304 num_indices = sum(1 for idx in key_list if idx is not array_ops.newaxis)
|
D | ragged_tensor_test.py | 808 (SLICE_BUILDER[array_ops.newaxis, :], [EXAMPLE_RAGGED_TENSOR_2D]), 809 (SLICE_BUILDER[:, array_ops.newaxis], 909 (SLICE_BUILDER[array_ops.newaxis, :], [EXAMPLE_RAGGED_TENSOR_4D]), 910 (SLICE_BUILDER[:, array_ops.newaxis], 1035 rt_newaxis0 = rt[array_ops.newaxis] 1036 rt_newaxis1 = rt[:, array_ops.newaxis] 1037 rt_newaxis2 = rt[:, :, array_ops.newaxis] 1038 rt_newaxis3 = rt[:, :, :, array_ops.newaxis] 1039 rt_newaxis4 = rt[:, :, :, :, array_ops.newaxis]
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | vector_student_t_test.py | 239 loc=np.tile(loc[array_ops.newaxis, :], reps=[len(df), 1]), 240 scale_tril=np.tile(scale_tril[array_ops.newaxis, :, :], 265 loc=np.tile(loc[array_ops.newaxis, :], reps=[len(df), 1]), 266 scale_tril=np.tile(scale_tril[array_ops.newaxis, :, :],
|
/external/tensorflow/tensorflow/python/kernel_tests/signal/ |
D | reconstruction_ops_test.py | 44 powers = np.power(self.bases[:, np.newaxis], exponents[np.newaxis, :]) 187 input_matrix = input_matrix[np.newaxis, :, :].astype(float)
|
/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/serialization/ |
D | parallel_map_dataset_serialization_test.py | 44 np.arange(self._tensor_slice_len)[:, np.newaxis], 55 np.arange(self._tensor_slice_len)[:, np.newaxis],
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | multinomial_test.py | 269 theta /= np.sum(theta, 1)[..., array_ops.newaxis] 276 x_centered = x - sample_mean[array_ops.newaxis, ...] 278 x_centered[..., array_ops.newaxis], 279 x_centered[..., array_ops.newaxis, :]), 0)
|