/external/tensorflow/tensorflow/compiler/tests/ |
D | nary_ops_test.py | 23 import numpy as np namespace 58 [np.array([[1, 2, 3]], dtype=np.float32)], 59 expected=np.array([[1, 2, 3]], dtype=np.float32)) 62 [np.array([1, 2], dtype=np.float32), 63 np.array([10, 20], dtype=np.float32)], 64 expected=np.array([11, 22], dtype=np.float32)) 66 [np.array([-4], dtype=np.float32), 67 np.array([10], dtype=np.float32), 68 np.array([42], dtype=np.float32)], 69 expected=np.array([48], dtype=np.float32)) [all …]
|
D | binary_ops_test.py | 23 import numpy as np namespace 71 np.array([[[[-1, 2.00009999], [-3, b]]]], dtype=dtype), 72 np.array([[[[a, 2], [-3.00009, 4]]]], dtype=dtype), 73 expected=np.array([[[[False, True], [True, False]]]], dtype=dtype)) 77 np.array([3, 3, -1.5, -8, 44], dtype=dtype), 78 np.array([2, -2, 7, -4, 0], dtype=dtype), 79 expected=np.array( 86 np.array([1, 2], dtype=dtype), 87 np.zeros(shape=[0, 2], dtype=dtype), 88 expected=np.zeros(shape=[0, 2], dtype=dtype)) [all …]
|
D | unary_ops_test.py | 23 import numpy as np namespace 40 return np.transpose(x, [0, rank - 1] + list(range(1, rank - 1))) 88 for dtype in self.numeric_types - {np.int8, np.uint8}: 90 array_ops.diag, np.array([1, 2, 3, 4], dtype=dtype), 91 np.array( 96 np.arange(36).reshape([2, 3, 2, 3]).astype(dtype), 97 np.array([[0, 7, 14], [21, 28, 35]], dtype=dtype)) 99 array_ops.diag, np.array([[1, 2], [3, 4]], dtype=dtype), 100 np.array( 107 np.array([[-1, 1]], dtype=dtype), [all …]
|
D | ternary_ops_test.py | 21 import numpy as np namespace 46 np.float32(1), 47 np.float32(2), 48 np.int32(1), 49 expected=np.array([1], dtype=np.float32)) 52 np.float32(1), 53 np.float32(4), 54 np.int32(3), 55 expected=np.array([1, 2.5, 4], dtype=np.float32)) 60 np.int32(1), [all …]
|
D | gather_nd_op_test.py | 21 import numpy as np namespace 43 np.array([7, 7, 8], dtype=dtype), 45 np.array([8, 1, 2, 3, 7, 5], dtype=dtype), 46 np.array([[4], [4], [0]], np.int32))) 50 params = np.ones((3, 3), dtype=np.float32) 52 indices_empty = np.empty((0, 2), dtype=np.int32) 54 self.assertAllClose(np.empty((0,), dtype=np.float32), gather_nd_ok_val) 56 indices_empty = np.empty((0, 1), dtype=np.int32) 58 self.assertAllClose(np.empty((0, 3), dtype=np.float32), gather_nd_ok_val) 60 params_empty = np.empty((0, 3), dtype=np.float32) [all …]
|
D | image_ops_test.py | 24 import numpy as np namespace 41 return np.random.randint(0, 256, shape) / 256. 48 np.random.seed(7) 79 rgb_np = np.array(data, dtype=nptype).reshape([2, 2, 3]) / 255. 93 hsv_np = np.array([ 95 r.astype(np.float64), g.astype(np.float64), b.astype(np.float64)) 122 x_np = np.array(x_data, dtype=np.float32).reshape(x_shape) / 255. 128 y_np = np.array(y_data, dtype=np.float32).reshape(x_shape) / 255. 135 x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape) 138 y_np = np.array(y_data, dtype=np.uint8).reshape(x_shape) [all …]
|
D | dynamic_stitch_test.py | 21 import numpy as np namespace 53 idx1 = np.array([0, 2], dtype=np.int32) 54 idx2 = np.array([[1], [3]], dtype=np.int32) 55 val1 = np.array([[], []], dtype=np.int32) 56 val2 = np.array([[[]], [[]]], dtype=np.int32) 59 expected=np.array([[], [], [], []], np.int32)) 62 idx1 = np.array([], dtype=np.int32) 63 idx2 = np.array([[], []], dtype=np.int32) 64 val1 = np.ndarray(shape=(0, 9), dtype=np.int32) 65 val2 = np.ndarray(shape=(2, 0, 9), dtype=np.int32) [all …]
|
D | reduce_ops_test.py | 24 import numpy as np namespace 74 np.zeros(shape=(2, 0)), 75 np.zeros(shape=(0, 30)), 76 np.arange(1, 7).reshape(2, 3), 77 np.arange(-10, -4).reshape(2, 3), 78 np.arange(-4, 2).reshape(2, 3), 81 np.zeros(shape=(2, 0)).astype(np.complex64), 82 np.zeros(shape=(0, 30)).astype(np.complex64), 83 np.arange(1, 13, dtype=np.float32).view(np.complex64).reshape(2, 3), 84 np.arange(-14, -2, dtype=np.float32).view(np.complex64).reshape(2, 3), [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/ |
D | training_ops_test.py | 20 import numpy as np namespace 46 feature1_nodes = np.array([0], dtype=np.int32) 47 feature1_gains = np.array([7.62], dtype=np.float32) 48 feature1_thresholds = np.array([52], dtype=np.int32) 49 feature1_left_node_contribs = np.array([[-4.375]], dtype=np.float32) 50 feature1_right_node_contribs = np.array([[7.143]], dtype=np.float32) 52 feature2_nodes = np.array([0], dtype=np.int32) 53 feature2_gains = np.array([0.63], dtype=np.float32) 54 feature2_thresholds = np.array([23], dtype=np.int32) 55 feature2_left_node_contribs = np.array([[-0.6]], dtype=np.float32) [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | dense_attention_test.py | 21 import numpy as np namespace 34 scores = np.array([[[1.1]]], dtype=np.float32) 36 v = np.array([[[1.6]]], dtype=np.float32) 38 v_mask = np.array([[True]], dtype=np.bool_) 44 expected = np.array([[[1.6]]], dtype=np.float32) 49 scores = np.array([[[1.1]]], dtype=np.float32) 51 v = np.array([[[1.6]]], dtype=np.float32) 57 expected = np.array([[[1.6]]], dtype=np.float32) 62 scores = np.array([[[1., 0., 1.]]], dtype=np.float32) 64 v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/datasets/ |
D | synthetic.py | 26 import numpy as np namespace 70 np.random.seed(seed) 72 linspace = np.linspace(0, 2 * np.pi, n_samples // n_classes) 73 circ_x = np.empty(0, dtype=np.int32) 74 circ_y = np.empty(0, dtype=np.int32) 75 base_cos = np.cos(linspace) 76 base_sin = np.sin(linspace) 78 y = np.empty(0, dtype=np.int32) 80 circ_x = np.append(circ_x, base_cos) 81 circ_y = np.append(circ_y, base_sin) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | cast_op_test.py | 21 import numpy as np namespace 40 if dtype == np.float32: 42 elif dtype == np.float64: 44 elif dtype == np.int32: 46 elif dtype == np.int64: 48 elif dtype == np.bool: 50 elif dtype == np.complex64: 52 elif dtype == np.complex128: 59 val = constant_op.constant(x, self._toDataType(np.array([x]).dtype)) 72 np.float32, np.float64, np.int64, np.complex64, np.complex128 [all …]
|
D | cwise_ops_unary_test.py | 23 import numpy as np namespace 43 def _sparsify(x, thresh=0.5, index_dtype=np.int64): 46 non_zero = np.where(x) 47 x_indices = np.vstack(non_zero).astype(index_dtype).T 61 if dtype == np.float16: 63 elif dtype in (np.float32, np.complex64): 65 elif dtype in (np.float64, np.complex128): 81 if x.dtype in (np.float32, np.float64, 89 if x.dtype == np.float16: 96 if x.dtype in (np.complex64, np.complex128) and tf_func == math_ops.sign: [all …]
|
D | cwise_ops_binary_test.py | 21 import numpy as np namespace 48 def _sparsify(x, thresh=0.5, index_dtype=np.int64): 51 non_zero = np.where(x) 52 x_indices = np.vstack(non_zero).astype(index_dtype).T 66 if dtype == np.float16: 68 elif dtype in (np.float32, np.complex64): 70 elif dtype in (np.float64, np.complex128): 98 if np_ans.dtype != np.object: 126 if x.dtype in (np.float32, np.float64): 156 if x.dtype in (np.float32, np.float64): [all …]
|
D | parse_single_example_op_test.py | 23 import numpy as np namespace 53 return (np.empty(shape=(0, len(shape)), dtype=np.int64), 54 np.array([], dtype=dtype), np.array(shape, dtype=np.int64)) 132 b_default = np.random.rand(3, 3).astype(bytes) 133 c_default = np.random.rand(2).astype(np.float32) 136 np.empty((0, 1), dtype=np.int64), # indices 137 np.empty((0,), dtype=np.int64), # sp_a is DT_INT64 138 np.array([0], dtype=np.int64)) # max_elems = 0 142 a_name: np.array([a_default]), 143 b_name: np.array(b_default), [all …]
|
D | transpose_op_test.py | 23 import numpy as np namespace 37 ret = np.copy(x) 44 perm = (rank - 1) - np.arange(rank) 49 np_ans = np.conj(np_ans) 59 xs = list(np.shape(x)) 60 ys = list(np.shape(tf_ans)) 61 if x.dtype in [np.float32, np.complex64]: 65 elif x.dtype in [np.float64, np.complex128]: 75 perm = (rank - 1) - np.arange(rank) 80 np_ans = np.conj(np_ans) [all …]
|
D | one_hot_op_test.py | 21 import numpy as np namespace 56 indices = np.asarray([0, 2, -1, 1], dtype=np.int64) 58 on_value = np.asarray(1.0, dtype=dtype) 59 off_value = np.asarray(-1.0, dtype=dtype) 61 truth = np.asarray( 86 indices = np.asarray([0, 2, -1, 1], dtype=np.int64) 89 truth = np.asarray( 102 self._testBasic(np.float32) 103 self._testDefaultBasic(np.float32) 106 self._testBasic(np.float64) [all …]
|
D | cwise_ops_test.py | 21 import numpy as np namespace 58 def _sparsify(x, thresh=0.5, index_dtype=np.int64): 61 non_zero = np.where(x) 62 x_indices = np.vstack(non_zero).astype(index_dtype).T 76 if dtype == np.float16: 78 elif dtype in (np.float32, np.complex64): 80 elif dtype in (np.float64, np.complex128): 91 ops.convert_to_tensor(np.array([x]).astype(dtype)), 92 ops.convert_to_tensor(np.array([y]).astype(dtype))) 97 dtypes = [np.float16, np.float32, np.float64, np.int32, np.int64] [all …]
|
D | diag_op_test.py | 20 import numpy as np namespace 38 v = np.array([1.0, 2.0, 3.0]) 39 mat = np.diag(v) 46 v_batch = np.array([[1.0, 0.0, 3.0], [4.0, 5.0, 6.0]]).astype(dtype) 47 mat_batch = np.array([[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 3.0]], 56 self._testBatchVector(np.float32) 57 self._testBatchVector(np.float64) 58 self._testBatchVector(np.int32) 59 self._testBatchVector(np.int64) 60 self._testBatchVector(np.bool) [all …]
|
/external/tensorflow/tensorflow/contrib/reduce_slice_ops/python/kernel_tests/ |
D | reduce_slice_ops_test.py | 21 import numpy as np namespace 31 x = np.array([1, 40, 700], dtype=np.int32) 32 indices = np.array([[0, 1], [0, 3], [1, 2], [1, 3], [0, 2]], dtype=np.int32) 33 result = np.array([1, 741, 40, 740, 41], dtype=np.int32) 39 x = np.array([[1, 2, 3], [40, 50, 60], [700, 800, 900]], dtype=np.int32) 40 indices = np.array([[0, 1], [0, 3], [1, 2], [1, 3], [0, 2]], dtype=np.int32) 41 result = np.array([[1, 2, 3], [741, 852, 963], [40, 50, 60], 42 [740, 850, 960], [41, 52, 63]], dtype=np.int32) 48 x = np.array([[[1, 2], [3, 4]], [[50, 60], [70, 80]], 49 [[600, 700], [800, 900]]], dtype=np.int32) [all …]
|
/external/tensorflow/tensorflow/python/data/kernel_tests/ |
D | interleave_test.py | 21 import numpy as np namespace 87 return [[value] * value for value in np.tile(values, count)] 123 ("1", np.int64([4, 5, 6]), 1, 3, None), 124 ("2", np.int64([4, 5, 6]), 1, 3, 1), 125 ("3", np.int64([4, 5, 6]), 2, 1, None), 126 ("4", np.int64([4, 5, 6]), 2, 1, 1), 127 ("5", np.int64([4, 5, 6]), 2, 1, 2), 128 ("6", np.int64([4, 5, 6]), 2, 3, None), 129 ("7", np.int64([4, 5, 6]), 2, 3, 1), 130 ("8", np.int64([4, 5, 6]), 2, 3, 2), [all …]
|
D | from_tensor_slices_test.py | 20 import numpy as np namespace 38 np.tile(np.array([[1], [2], [3], [4]]), 20), np.tile( 39 np.array([[12], [13], [14], [15]]), 22), 40 np.array([37.0, 38.0, 39.0, 40.0]) 60 indices=np.array([[0, 0], [1, 0], [2, 0]]), 61 values=np.array([0, 0, 0]), 62 dense_shape=np.array([3, 1])), 64 indices=np.array([[0, 0], [1, 1], [2, 2]]), 65 values=np.array([1, 2, 3]), 66 dense_shape=np.array([3, 3]))) [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/bijectors/ |
D | sinh_arcsinh_bijector_test.py | 21 import numpy as np namespace 44 x = np.array([[[-2.01], [2.], [1e-4]]]).astype(np.float32) 45 y = np.sinh((np.arcsinh(x) + skewness) * tailweight) 49 np.sum( 50 np.log(np.cosh(np.arcsinh(y) / tailweight - skewness)) - 51 np.log(tailweight) - np.log(np.sqrt(y**2 + 1)), 86 self.assertGreater(np.abs(y[0, 0]), np.abs(y[0, 1])) 89 self.assertAllClose(np.abs(y[1, 0]), np.abs(y[1, 1])) 92 self.assertLess(np.abs(y[2, 0]), np.abs(y[2, 1])) 107 x = np.concatenate((-np.logspace(-2, 10, 1000), [0], np.logspace( [all …]
|
/external/tensorflow/tensorflow/contrib/crf/python/kernel_tests/ |
D | crf_test.py | 23 import numpy as np namespace 44 transition_params = np.array( 45 [[-3, 5, -2], [3, 4, 1], [1, 2, 1]], dtype=np.float32) 48 np.array(3, dtype=np.int32), 49 np.array(1, dtype=np.int32) 52 np.array([[4, 5, -3], [3, -1, 3], [-1, 2, 1], [0, 0, 0]], 53 dtype=np.float32), 54 np.array([[4, 5, -3]], 55 dtype=np.float32), 58 np.array([1, 2, 1, 0], dtype=np.int32), [all …]
|
/external/tensorflow/tensorflow/contrib/sparsemax/python/kernel_tests/ |
D | sparsemax_loss_test.py | 21 import numpy as np namespace 36 z = z - np.mean(z, axis=1)[:, np.newaxis] 39 z_sorted = np.sort(z, axis=1)[:, ::-1] 42 z_cumsum = np.cumsum(z_sorted, axis=1) 43 k = np.arange(1, z.shape[1] + 1) 49 k_z = z.shape[1] - np.argmax(z_check[:, ::-1], axis=1) 52 tau_sum = z_cumsum[np.arange(0, z.shape[0]), k_z - 1] 56 return np.maximum(0, z - tau_z) 59 z = z - np.mean(z, axis=1)[:, np.newaxis] 62 z_k = np.sum(q * z, axis=1) [all …]
|