/external/tensorflow/tensorflow/contrib/slim/python/slim/nets/ |
D | vgg_test.py | 36 num_classes = 1000 39 logits, _ = vgg.vgg_a(inputs, num_classes) 42 [batch_size, num_classes]) 47 num_classes = 1000 50 logits, _ = vgg.vgg_a(inputs, num_classes, spatial_squeeze=False) 53 [batch_size, 2, 2, num_classes]) 58 num_classes = 1000 62 _, end_points = vgg.vgg_a(inputs, num_classes, is_training=is_training) 75 num_classes = 1000 78 vgg.vgg_a(inputs, num_classes) [all …]
|
D | inception_v3_test.py | 41 num_classes = 1000 44 logits, end_points = inception_v3.inception_v3(inputs, num_classes) 47 [batch_size, num_classes]) 50 [batch_size, num_classes]) 135 num_classes = 1000 138 _, end_points = inception_v3.inception_v3(inputs, num_classes) 142 [batch_size, num_classes]) 146 [batch_size, num_classes]) 159 num_classes = 1000 162 _, end_points = inception_v3.inception_v3(inputs, num_classes) [all …]
|
D | inception_v2_test.py | 41 num_classes = 1000 44 logits, end_points = inception_v2.inception_v2(inputs, num_classes) 47 [batch_size, num_classes]) 50 [batch_size, num_classes]) 129 num_classes = 1000 132 _, end_points = inception_v2.inception_v2(inputs, num_classes) 140 inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=0.5) 150 num_classes = 1000 153 _, end_points = inception_v2.inception_v2(inputs, num_classes) 161 inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=2.0) [all …]
|
D | overfeat_test.py | 35 num_classes = 1000 38 logits, _ = overfeat.overfeat(inputs, num_classes) 41 [batch_size, num_classes]) 46 num_classes = 1000 49 logits, _ = overfeat.overfeat(inputs, num_classes, spatial_squeeze=False) 52 [batch_size, 2, 2, num_classes]) 57 num_classes = 1000 60 _, end_points = overfeat.overfeat(inputs, num_classes) 72 num_classes = 1000 75 overfeat.overfeat(inputs, num_classes) [all …]
|
D | alexnet_test.py | 35 num_classes = 1000 38 logits, _ = alexnet.alexnet_v2(inputs, num_classes) 41 [batch_size, num_classes]) 46 num_classes = 1000 49 logits, _ = alexnet.alexnet_v2(inputs, num_classes, spatial_squeeze=False) 52 [batch_size, 4, 7, num_classes]) 57 num_classes = 1000 60 _, end_points = alexnet.alexnet_v2(inputs, num_classes) 72 num_classes = 1000 75 alexnet.alexnet_v2(inputs, num_classes) [all …]
|
D | inception_v1_test.py | 41 num_classes = 1000 44 logits, end_points = inception_v1.inception_v1(inputs, num_classes) 47 [batch_size, num_classes]) 50 [batch_size, num_classes]) 144 num_classes = 1000 149 logits, end_points = inception_v1.inception_v1(inputs, num_classes) 152 [batch_size, num_classes]) 162 num_classes = 1000 165 logits, _ = inception_v1.inception_v1(inputs, num_classes) 167 self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) [all …]
|
D | resnet_v1.py | 130 num_classes=None, argument 211 if num_classes is not None: 214 num_classes, [1, 1], 220 if num_classes is not None: 252 num_classes=None, argument 268 num_classes, 278 num_classes=None, argument 294 num_classes, 304 num_classes=None, argument 320 num_classes, [all …]
|
D | resnet_v2.py | 132 num_classes=None, argument 225 if num_classes is not None: 228 num_classes, [1, 1], 234 if num_classes is not None: 265 num_classes=None, argument 281 num_classes, 291 num_classes=None, argument 307 num_classes, 317 num_classes=None, argument 333 num_classes, [all …]
|
D | resnet_v1_test.py | 260 num_classes=None, argument 275 return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training, 281 num_classes = 10 285 inputs, num_classes, global_pool=global_pool, scope='resnet') 287 self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) 290 [2, 1, 1, num_classes]) 294 num_classes = 10 298 inputs, num_classes, global_pool=global_pool, scope='resnet') 311 num_classes = 10 315 inputs, num_classes, global_pool=global_pool, scope='resnet') [all …]
|
D | resnet_v2_test.py | 264 num_classes=None, argument 279 return resnet_v2.resnet_v2(inputs, blocks, num_classes, is_training, 285 num_classes = 10 289 inputs, num_classes, global_pool=global_pool, scope='resnet') 291 self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) 294 [2, 1, 1, num_classes]) 298 num_classes = 10 302 inputs, num_classes, global_pool=global_pool, scope='resnet') 315 num_classes = 10 319 inputs, num_classes, global_pool=global_pool, scope='resnet') [all …]
|
/external/tensorflow/tensorflow/python/keras/ |
D | model_subclassing_test.py | 49 def __init__(self, use_bn=False, use_dp=False, num_classes=10): argument 53 self.num_classes = num_classes 56 self.dense2 = keras.layers.Dense(num_classes, activation='softmax') 73 def __init__(self, num_classes=10): argument 75 self.num_classes = num_classes 79 self.dense1 = keras.layers.Dense(num_classes, activation='softmax') 89 def __init__(self, use_bn=False, use_dp=False, num_classes=(2, 3)): argument 93 self.num_classes = num_classes 96 self.dense2 = keras.layers.Dense(num_classes[0], activation='softmax') 97 self.dense3 = keras.layers.Dense(num_classes[1], activation='softmax') [all …]
|
D | testing_utils.py | 43 num_classes, argument 60 templates = 2 * num_classes * np.random.random((num_classes,) + input_shape) 61 y = np.random.randint(0, num_classes, size=(num_sample,)) 288 def get_small_sequential_mlp(num_hidden, num_classes, input_dim=None): argument 295 activation = 'sigmoid' if num_classes == 1 else 'softmax' 296 model.add(keras.layers.Dense(num_classes, activation=activation)) 300 def get_small_functional_mlp(num_hidden, num_classes, input_dim): argument 303 activation = 'sigmoid' if num_classes == 1 else 'softmax' 304 outputs = keras.layers.Dense(num_classes, activation=activation)(outputs) 311 def __init__(self, num_hidden, num_classes): argument [all …]
|
/external/tensorflow/tensorflow/contrib/tensor_forest/kernels/ |
D | tree_utils_test.cc | 98 const int32 num_classes = 4; in TEST() local 102 {num_accumulators, num_classes}); in TEST() 108 {num_accumulators, num_splits, num_classes}); in TEST() 116 const int32 num_classes = 4; in TEST() local 121 {num_accumulators, num_classes}); in TEST() 127 {num_accumulators, num_splits, num_classes}); in TEST() 135 const int32 num_classes = 4; in TEST() local 139 {num_accumulators, num_classes}); in TEST() 143 {num_accumulators, num_classes}); in TEST() 150 {num_accumulators, num_splits, num_classes}); in TEST() [all …]
|
D | tree_utils.cc | 68 const Eigen::Tensor<float, 1, Eigen::RowMajor>& rights, int32 num_classes, in ClassificationSplitScore() argument 73 offsets[0] = i * (num_classes + 1) + 1; in ClassificationSplitScore() 75 extents[0] = num_classes; in ClassificationSplitScore() 86 const int32 num_classes = in GetTwoBestClassification() local 106 std::bind(ClassificationSplitScore, splits, rights, num_classes, in GetTwoBestClassification() 238 const int32 num_classes = in MakeBootstrapWeights() local 246 float denom = static_cast<float>(n) + static_cast<float>(num_classes); in MakeBootstrapWeights() 248 weights->resize(num_classes * 2); in MakeBootstrapWeights() 249 for (int i = 0; i < num_classes; i++) { in MakeBootstrapWeights() 255 (*weights)[num_classes + i] = (right_count + 1.0) / denom; in MakeBootstrapWeights() [all …]
|
/external/tensorflow/tensorflow/contrib/tensor_forest/kernels/v4/ |
D | stat_utils.cc | 33 float GiniImpurity(const LeafStat& stats, int32 num_classes) { in GiniImpurity() argument 34 const float smoothed_sum = num_classes + stats.weight_sum(); in GiniImpurity() 36 2 * stats.weight_sum() + num_classes) / in GiniImpurity() 40 float WeightedGiniImpurity(const LeafStat& stats, int32 num_classes) { in WeightedGiniImpurity() argument 41 return stats.weight_sum() * GiniImpurity(stats, num_classes); in WeightedGiniImpurity() 74 float SmoothedGini(float sum, float square, int num_classes) { in SmoothedGini() argument 76 const float smoothed_sum = num_classes + sum; in SmoothedGini() 77 return 1.0 - (square + 2 * sum + num_classes) / (smoothed_sum * smoothed_sum); in SmoothedGini() 80 float WeightedSmoothedGini(float sum, float square, int num_classes) { in WeightedSmoothedGini() argument 81 return sum * SmoothedGini(sum, square, num_classes); in WeightedSmoothedGini()
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | np_utils_test.py | 30 num_classes = 5 32 expected_shapes = [(1, num_classes), 33 (3, num_classes), 34 (4, 3, num_classes), 35 (5, 4, 3, num_classes), 36 (3, num_classes)] 37 labels = [np.random.randint(0, num_classes, shape) for shape in shapes] 39 keras.utils.to_categorical(label, num_classes) for label in labels]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | multinomial_op_gpu.cu.cc | 42 __global__ void MultinomialKernel(int32 nthreads, const int32 num_classes, in MultinomialKernel() argument 46 const int maxima_idx = index / num_classes; in MultinomialKernel() 50 static_cast<UnsignedOutputType>(index % num_classes)); in MultinomialKernel() 62 int num_classes, int num_samples, in operator ()() 74 bsc.set(2, num_classes); in operator ()() 78 boc.set(2, num_classes); in operator ()() 83 Eigen::array<int, 3> bsc{batch_size, num_samples, num_classes}; in operator ()() 84 Eigen::array<int, 3> boc{batch_size, 1, num_classes}; in operator ()() 106 /*in_dim1=*/num_classes, /*in_dim2=*/1, /*out_rank=*/1, in operator ()() 112 const int32 work_items = batch_size * num_samples * num_classes; in operator ()() [all …]
|
D | multinomial_op.cc | 51 int num_classes, int num_samples, 77 int num_classes, int num_samples, in operator ()() 86 auto DoWork = [ctx, num_samples, num_classes, &gen, &output, &logits]( in operator ()() 99 ctx->allocate_temp(DT_DOUBLE, TensorShape({num_classes}), in operator ()() 107 for (int64 j = 0; j < num_classes; ++j) { in operator ()() 119 for (int64 j = 0; j < num_classes; ++j) { in operator ()() 127 const double* cdf_end = cdf.data() + num_classes; in operator ()() 137 50 * (num_samples * std::log(num_classes) / std::log(2) + num_classes); in operator ()() 176 const int num_classes = static_cast<int>(logits_t.dim_size(1)); in DoCompute() local 177 OP_REQUIRES(ctx, num_classes > 0, in DoCompute() [all …]
|
/external/tensorflow/tensorflow/core/util/ctc/ |
D | ctc_loss_calculator.h | 94 int num_classes, const Vector& seq_len, 123 auto num_classes = inputs[0].cols(); in CalculateLoss() local 136 if (inputs[t].cols() != num_classes) { in CalculateLoss() 138 " to be: ", num_classes, in CalculateLoss() 161 batch_size, num_classes, seq_len, labels, &max_u_prime, &l_primes); in CalculateLoss() 167 auto ComputeLossAndGradients = [this, num_classes, &labels, &l_primes, in CalculateLoss() 196 Matrix y(num_classes, seq_len(b)); in CalculateLoss() 262 max_seq_len * num_classes * in CalculateLoss() 264 max_seq_len * 2 * (2 * num_classes + 1) * in CalculateLoss() 267 ((2 * num_classes + 1) * cost_log_sum_exp + in CalculateLoss() [all …]
|
D | ctc_beam_search_test.cc | 107 const int num_classes = 6; in TEST() local 111 CTCBeamSearchDecoder<> decoder(num_classes, 10 * top_paths, &default_scorer); in TEST() 116 num_classes, top_paths, &dictionary_scorer); in TEST() 120 float input_data_mat[timesteps][batch_size][num_classes] = { in TEST() 130 for (int c = 0; c < num_classes; ++c) { in TEST() 155 inputs.emplace_back(&input_data_mat[t][0][0], batch_size, num_classes); in TEST() 187 const int num_classes = 6; in TEST() local 191 CTCBeamSearchDecoder<> decoder(num_classes, top_paths, &default_scorer); in TEST() 195 float input_data_mat[timesteps][batch_size][num_classes] = { in TEST() 205 inputs.emplace_back(&input_data_mat[t][0][0], batch_size, num_classes); in TEST() [all …]
|
/external/tensorflow/tensorflow/contrib/nn/python/ops/ |
D | sampling_ops.py | 116 num_classes, argument 209 if num_sampled > num_classes: 211 format(num_sampled, num_classes)) 227 range_max=num_classes) 239 num_classes=num_classes, 252 num_classes, argument 327 num_classes=num_classes,
|
/external/tensorflow/tensorflow/python/ops/ |
D | confusion_matrix.py | 96 num_classes=None, argument 151 (predictions, labels, num_classes, weights)) as name: 169 if num_classes is None: 170 num_classes = math_ops.maximum(math_ops.reduce_max(predictions), 173 num_classes_int64 = math_ops.cast(num_classes, dtypes.int64) 189 shape = array_ops.stack([num_classes, num_classes]) 206 num_classes=None, argument 260 return confusion_matrix(labels, predictions, num_classes, weights, dtype,
|
/external/tensorflow/tensorflow/contrib/tensor_forest/python/ |
D | tensor_forest_test.py | 36 num_classes=2, 41 self.assertEquals(2, hparams.num_classes) 50 num_classes=2, 59 num_classes=2, 73 num_classes=4, 89 num_classes=4, 105 num_classes=4, 123 num_classes=2, 166 num_classes=4, 189 num_classes=4,
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | sequential_test.py | 67 num_classes = 2 70 num_hidden, num_classes, input_dim) 76 y = np.random.random((batch_size, num_classes)) 105 num_classes = 2 107 model = testing_utils.get_small_sequential_mlp(num_hidden, num_classes) 118 y = np.random.random((batch_size, num_classes)) 128 num_classes = 2 132 model = testing_utils.get_small_sequential_mlp(num_hidden, num_classes) 143 y = array_ops.zeros((num_samples, num_classes)) 227 num_classes = 2 [all …]
|
/external/tensorflow/tensorflow/lite/experimental/kernels/ |
D | ctc_decoder.h | 43 CTCDecoder(int num_classes, int batch_size, bool merge_repeated) in CTCDecoder() argument 44 : num_classes_(num_classes), in CTCDecoder() 45 blank_index_(num_classes - 1), in CTCDecoder() 61 int num_classes() { return num_classes_; } in num_classes() function 74 CTCGreedyDecoder(int num_classes, int batch_size, bool merge_repeated) in CTCGreedyDecoder() argument 75 : CTCDecoder(num_classes, batch_size, merge_repeated) {} in CTCGreedyDecoder()
|