/external/tensorflow/tensorflow/python/ops/ |
D | linalg_ops_impl.py | 34 num_columns=None, argument 43 name, default_name='eye', values=[num_rows, num_columns, batch_shape]): 44 is_square = num_columns is None 46 num_columns = num_rows if num_columns is None else num_columns 50 isinstance(num_columns, ops.Tensor)): 51 diag_size = math_ops.minimum(num_rows, num_columns) 55 num_columns, compat.integral_types): 58 is_square = num_rows == num_columns 59 diag_size = np.minimum(num_rows, num_columns) 67 shape = array_ops.concat((batch_shape, [num_rows, num_columns]), axis=0) [all …]
|
D | linalg_ops.py | 129 num_columns=None, argument 166 num_columns=num_columns,
|
D | sparse_ops.py | 159 num_columns=None, argument 176 with ops.name_scope(name, default_name="eye", values=[num_rows, num_columns]): 178 num_columns = num_rows if num_columns is None else _make_int64_tensor( 179 num_columns, "num_columns") 182 diag_size = math_ops.minimum(num_rows, num_columns) 188 dense_shape=[num_rows, num_columns])
|
/external/webrtc/webrtc/modules/audio_processing/beamformer/ |
D | matrix_test_helpers.h | 33 EXPECT_EQ(expected.num_columns(), actual.num_columns()); in ValidateMatrixEquality() 38 for (size_t j = 0; j < expected.num_columns(); ++j) { in ValidateMatrixEquality() 47 EXPECT_EQ(expected.num_columns(), actual.num_columns()); in ValidateMatrixEqualityFloat() 52 for (size_t j = 0; j < expected.num_columns(); ++j) { in ValidateMatrixEqualityFloat() 62 EXPECT_EQ(expected.num_columns(), actual.num_columns()); in ValidateMatrixEqualityComplexFloat() 67 for (size_t j = 0; j < expected.num_columns(); ++j) { in ValidateMatrixEqualityComplexFloat() 83 EXPECT_EQ(expected.num_columns(), actual.num_columns()); in ValidateMatrixNearEqualityComplexFloat() 88 for (size_t j = 0; j < expected.num_columns(); ++j) { in ValidateMatrixNearEqualityComplexFloat()
|
D | complex_matrix.h | 30 ComplexMatrix(size_t num_rows, size_t num_columns) in ComplexMatrix() argument 31 : Matrix<complex<T> >(num_rows, num_columns) {} in ComplexMatrix() 33 ComplexMatrix(const complex<T>* data, size_t num_rows, size_t num_columns) in ComplexMatrix() argument 34 : Matrix<complex<T> >(data, num_rows, num_columns) {} in ComplexMatrix() 39 size_t size = this->num_rows() * this->num_columns(); in PointwiseConjugate() 55 this->SetNumRows(this->num_columns()); in ConjugateTranspose() 62 RTC_CHECK_EQ(operand.num_rows(), this->num_columns()); in ConjugateTranspose() 63 RTC_CHECK_EQ(operand.num_columns(), this->num_rows()); in ConjugateTranspose() 69 size_t size = this->num_rows() * this->num_columns(); in ZeroImag() 86 for (size_t j = 0; j < this->num_columns(); ++j) { in ConjugateTranspose()
|
D | matrix.h | 70 Matrix(size_t num_rows, size_t num_columns) in Matrix() argument 71 : num_rows_(num_rows), num_columns_(num_columns) { in Matrix() 78 Matrix(const T* data, size_t num_rows, size_t num_columns) in Matrix() argument 80 CopyFrom(data, num_rows, num_columns); in Matrix() 93 void CopyFrom(const T* const data, size_t num_rows, size_t num_columns) { in CopyFrom() argument 94 Resize(num_rows, num_columns); in CopyFrom() 109 void Resize(size_t num_rows, size_t num_columns) { in Resize() argument 110 if (num_rows != num_rows_ || num_columns != num_columns_) { in Resize() 112 num_columns_ = num_columns; in Resize() 119 size_t num_columns() const { return num_columns_; } in num_columns() function [all …]
|
D | nonlinear_beamformer.cc | 83 RTC_CHECK_EQ(norm_mat.num_columns(), mat.num_rows()); in Norm() 84 RTC_CHECK_EQ(norm_mat.num_columns(), mat.num_columns()); in Norm() 92 for (size_t i = 0; i < norm_mat.num_columns(); ++i) { in Norm() 93 for (size_t j = 0; j < norm_mat.num_columns(); ++j) { in Norm() 107 RTC_CHECK_EQ(lhs.num_columns(), rhs.num_columns()); in ConjugateDotProduct() 113 for (size_t i = 0; i < lhs.num_columns(); ++i) { in ConjugateDotProduct() 130 for (size_t j = 0; j < mat.num_columns(); ++j) { in SumAbs() 142 for (size_t j = 0; j < mat.num_columns(); ++j) { in SumSquares() 154 RTC_CHECK_EQ(out->num_rows(), in.num_columns()); in TransposedConjugatedProduct() 155 RTC_CHECK_EQ(out->num_columns(), in.num_columns()); in TransposedConjugatedProduct() [all …]
|
D | covariance_matrix_generator.cc | 31 const size_t length = x.num_columns(); in Norm() 47 RTC_CHECK_EQ(geometry.size(), mat->num_columns()); in UniformCovarianceMatrix() 72 RTC_CHECK_EQ(geometry.size(), mat->num_columns()); in AngledCovarianceMatrix() 98 RTC_CHECK_EQ(geometry.size(), mat->num_columns()); in PhaseAlignmentMasks()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | linalg_ops_test.py | 151 self.assertEqual((2, 3), linalg_ops.eye(num_rows=2, num_columns=3).shape) 161 num_rows=2, num_columns=3, batch_shape=batch_shape).shape) 178 num_columns = num_columns_fn() 182 num_columns=num_columns, 189 if num_columns is not None and not isinstance(num_columns, ops.Tensor): 210 def test_eye_no_placeholder(self, num_rows, num_columns, batch_shape, dtype): argument 211 eye_np = np.eye(num_rows, M=num_columns, dtype=dtype.as_numpy_dtype) 216 num_columns=num_columns, 241 self, num_rows, num_columns, batch_shape, dtype): argument 242 eye_np = np.eye(num_rows, M=num_columns, dtype=dtype.as_numpy_dtype) [all …]
|
/external/tensorflow/tensorflow/contrib/gan/python/eval/python/ |
D | eval_utils_impl.py | 117 num_columns = (num_cols if num_cols else 119 num_rows = int(math.ceil(float(num_images) / num_columns)) 120 rows = [images[x:x+num_columns] for x in range(0, num_images, num_columns)] 123 num_short = num_rows * num_columns - num_images 124 assert num_short >= 0 and num_short < num_columns
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | quantized_ops_test.py | 55 num_rows, num_columns = test_input.get_shape().as_list() 56 num_output_columns = int(math.ceil(num_columns / 4.0)) 62 ], [0, num_output_columns * 4 - num_columns]])) 83 num_columns = 3547 84 random_input = np.random.normal(128.0, 10.0, [num_rows, num_columns]) 96 [num_rows, num_columns])
|
/external/tensorflow/tensorflow/python/kernel_tests/linalg/ |
D | linear_operator_zeros_test.py | 88 linalg_lib.LinearOperatorZeros(num_rows=2, num_columns=[2]) 94 linalg_lib.LinearOperatorZeros(num_rows=2, num_columns=2.) 100 linalg_lib.LinearOperatorZeros(num_rows=2, num_columns=-2) 133 num_rows=2, num_columns=n, assert_proper_shapes=True) 201 num_columns = shape[-1] 204 num_rows, num_columns, is_square=False, is_self_adjoint=False,
|
/external/tensorflow/tensorflow/contrib/labeled_tensor/python/ops/ |
D | sugar_test.py | 47 self.num_columns = 100 52 self.batch_size * self.num_rows * self.num_columns * 55 self.batch_size, self.num_rows, self.num_columns, len(self.channels), 61 self.column_axis = ('column', range(self.num_columns))
|
/external/libxaac/decoder/ |
D | ixheaacd_sbr_dec.c | 201 WORD32 num_columns; in ixheaacd_esbr_analysis_filt_block() local 209 num_columns = pstr_qmf_anal_bank->no_channels; in ixheaacd_esbr_analysis_filt_block() 211 switch (num_columns) { in ixheaacd_esbr_analysis_filt_block() 235 pstr_qmf_anal_bank->usb = num_columns; in ixheaacd_esbr_analysis_filt_block() 241 ptr_filt_states_2 = pstr_qmf_anal_bank->anal_filter_states_32 + num_columns; in ixheaacd_esbr_analysis_filt_block() 244 for (z = 0; z < num_columns; z++) { in ixheaacd_esbr_analysis_filt_block() 245 ptr_filt_states[num_columns - 1 - z] = in ixheaacd_esbr_analysis_filt_block() 250 num_columns); in ixheaacd_esbr_analysis_filt_block() 252 core_coder_samples += num_columns; in ixheaacd_esbr_analysis_filt_block() 254 ptr_filt_states -= num_columns; in ixheaacd_esbr_analysis_filt_block() [all …]
|
D | ixheaacd_sbrqmftrans.h | 25 FLOAT32 qmf_buf_imag[][64], WORD32 num_columns,
|
D | ixheaacd_qmf_poly.h | 29 WORD32 num_columns, FLOAT32 qmf_buf_real[][64],
|
D | ixheaacd_sbr_dec.h | 184 FLOAT32 qmf_buf_imag[][64], WORD32 num_columns, 228 FLOAT32 qmf_buf_imag[][64], WORD32 num_columns,
|
D | ixheaacd_esbr_polyphase.c | 146 WORD32 num_columns, FLOAT32 qmf_buf_real[][64], in ixheaacd_real_synth_filt() argument 159 for (idx = 0; idx < num_columns; idx++) { in ixheaacd_real_synth_filt()
|
D | ixheaacd_lpp_tran.h | 50 WORD16 num_columns; member
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
D | linear_operator_zeros.py | 128 num_columns=None, argument 203 if num_columns is None: 204 num_columns = num_rows 207 num_columns, name="num_columns")
|
/external/autotest/frontend/tko/ |
D | csv_encoder.py | 38 def _total_index(self, group, num_columns): argument 40 return row_index * num_columns + column_index
|
/external/deqp-deps/SPIRV-Tools/source/val/ |
D | validate_decorations.cpp | 192 const auto num_columns = words[3]; in getBaseAlignment() local 198 componentAlignment * (num_columns == 3 ? 4 : num_columns); in getBaseAlignment() 300 const auto num_columns = words[3]; in getSize() local 302 return num_columns * inherited.matrix_stride; in getSize() 312 num_columns * scalar_elem_size; in getSize()
|
/external/swiftshader/third_party/SPIRV-Tools/source/val/ |
D | validate_decorations.cpp | 192 const auto num_columns = words[3]; in getBaseAlignment() local 198 componentAlignment * (num_columns == 3 ? 4 : num_columns); in getBaseAlignment() 305 const auto num_columns = words[3]; in getSize() local 307 return num_columns * inherited.matrix_stride; in getSize() 317 num_columns * scalar_elem_size; in getSize()
|
/external/tensorflow/tensorflow/compiler/xla/client/lib/ |
D | quantize_test.cc | 45 Array2D<NativeT> GenerateLargeSizeInput(int num_columns, int num_rows) { in GenerateLargeSizeInput() argument 46 Array2D<NativeT> input(num_columns, num_rows); in GenerateLargeSizeInput()
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.sparse.pbtxt | 33 …argspec: "args=[\'num_rows\', \'num_columns\', \'dtype\', \'name\'], varargs=None, keywords=None, …
|