/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | input_pipeline_test.py | 50 def _make_csv_time_series(num_features, num_samples, test_tmpdir): argument 54 for i in range(num_samples)], 59 def _make_tfexample_series(num_features, num_samples, test_tmpdir): argument 62 for i in range(num_samples): 74 def _make_numpy_time_series(num_features, num_samples): argument 75 times = numpy.arange(num_samples) 124 filename = _make_csv_time_series(num_features=1, num_samples=50, 131 num_features=1, num_samples=50, 143 data = _make_numpy_time_series(num_features=1, num_samples=50) 148 filename = _make_csv_time_series(num_features=1, num_samples=50, [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | lstm_test.py | 37 num_samples = 2 45 input_shape=(num_samples, timesteps, embedding_dim)) 63 num_samples = 2 73 x = np.random.random((num_samples, timesteps, embedding_dim)) 74 y = np.random.random((num_samples, units)) 78 num_samples = 2 87 input_shape=(num_samples, timesteps, embedding_dim)) 91 num_samples = 2 99 input_shape=(num_samples, timesteps, embedding_dim)) 160 num_samples = 2 [all …]
|
D | gru_test.py | 36 num_samples = 2 44 input_shape=(num_samples, timesteps, embedding_dim)) 47 num_samples = 2 56 x = np.random.random((num_samples, timesteps, embedding_dim)) 57 y = np.random.random((num_samples, units)) 61 num_samples = 2 70 input_shape=(num_samples, timesteps, embedding_dim)) 74 num_samples = 2 82 input_shape=(num_samples, timesteps, embedding_dim)) 85 num_samples = 2 [all …]
|
D | simplernn_test.py | 35 num_samples = 2 43 input_shape=(num_samples, timesteps, embedding_dim)) 46 num_samples = 2 54 x = np.random.random((num_samples, timesteps, embedding_dim)) 55 y = np.random.random((num_samples, units)) 59 num_samples = 2 68 input_shape=(num_samples, timesteps, embedding_dim)) 71 num_samples = 2 80 input_shape=(num_samples, timesteps, embedding_dim)) 142 num_samples = 2 [all …]
|
D | cudnn_recurrent_test.py | 48 num_samples = 32 53 input_shape=(num_samples, timesteps, input_size)) 64 num_samples = 32 69 input_shape=(num_samples, timesteps, input_size)) 80 num_samples = 32 83 inputs = keras.Input(batch_shape=(num_samples, timesteps, input_size)) 91 inputs = np.random.random((num_samples, timesteps, input_size)) 105 num_samples = 32 117 np.ones((num_samples, timesteps, input_size)), 118 np.ones((num_samples, timesteps, units))) [all …]
|
D | convolutional_test.py | 36 num_samples = 2 44 input_shape=(num_samples, length, stack_size)) 100 num_samples = 2 109 input_shape=(num_samples, num_row, num_col, stack_size)) 167 num_samples = 2 177 input_shape=(num_samples, depth, num_row, num_col, stack_size)) 259 num_samples = 2 262 shape = (num_samples, num_steps, input_dim) 309 num_samples = 2 314 inputs = np.ones((num_samples, input_num_row, input_num_col, stack_size)) [all …]
|
D | local_test.py | 38 num_samples = 2 67 input_shape=(num_samples, num_steps, input_dim)) 70 num_samples = 2 96 layer.build((num_samples, num_steps, input_dim)) 99 keras.backend.variable(np.ones((num_samples, 114 layer.build((num_samples, num_steps, input_dim)) 127 num_samples = 8 158 input_shape=(num_samples, num_row, num_col, stack_size)) 163 num_samples = 8 187 input_shape=(num_samples, num_row, num_col, stack_size)) [all …]
|
D | lstm_v2_test.py | 96 num_samples = 2 104 x = np.random.random((num_samples, timesteps, embedding_dim)) 105 y = np.random.random((num_samples, units)) 132 num_samples = 2 149 inputs = np.random.random((num_samples, timesteps, embedding_dim)) 151 np.random.random((num_samples, units)) for _ in range(num_states) 153 targets = np.random.random((num_samples, units)) 161 num_samples = 2 166 keras.backend.random_normal_variable((num_samples, units), 0, 1) 177 inputs = np.random.random((num_samples, timesteps, embedding_dim)) [all …]
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_estimator_signals_test.py | 31 def make_input_fn(num_samples): argument 32 a = np.linspace(0, 100.0, num=num_samples) 47 def make_input_fn_with_labels(num_samples): argument 48 a = np.linspace(0, 100.0, num=num_samples) 66 num_samples = 4 70 input_fn, (a, b) = make_input_fn(num_samples=num_samples) 86 self.assertAllEqual(a[batch_size:num_samples], result['a']) 87 self.assertAllEqual(b[batch_size:num_samples], result['b']) 94 num_samples = 4 98 input_fn, (a, b) = make_input_fn(num_samples=num_samples) [all …]
|
/external/webrtc/webrtc/common_audio/ |
D | wav_file.cc | 45 << (1.f * num_samples()) / (num_channels() * sample_rate()) << " s"; in FormatAsString() 67 size_t WavReader::ReadSamples(size_t num_samples, int16_t* samples) { in ReadSamples() argument 72 num_samples = std::min(num_samples, num_samples_remaining_); in ReadSamples() 74 fread(samples, sizeof(*samples), num_samples, file_handle_); in ReadSamples() 76 RTC_CHECK(read == num_samples || feof(file_handle_)); in ReadSamples() 82 size_t WavReader::ReadSamples(size_t num_samples, float* samples) { in ReadSamples() argument 85 for (size_t i = 0; i < num_samples; i += kChunksize) { in ReadSamples() 87 size_t chunk = std::min(kChunksize, num_samples - i); in ReadSamples() 121 void WavWriter::WriteSamples(const int16_t* samples, size_t num_samples) { in WriteSamples() argument 126 fwrite(samples, sizeof(*samples), num_samples, file_handle_); in WriteSamples() [all …]
|
D | wav_header_unittest.cc | 98 size_t num_samples = 0; in TEST() local 123 &bytes_per_sample, &num_samples)); in TEST() 144 &bytes_per_sample, &num_samples)); in TEST() 165 &bytes_per_sample, &num_samples)); in TEST() 187 &bytes_per_sample, &num_samples)); in TEST() 210 &bytes_per_sample, &num_samples)); in TEST() 229 &bytes_per_sample, &num_samples)); in TEST() 241 &bytes_per_sample, &num_samples)); in TEST() 275 size_t num_samples = 0; in TEST() local 279 &bytes_per_sample, &num_samples)); in TEST() [all …]
|
D | wav_file.h | 31 virtual size_t num_samples() const = 0; 50 void WriteSamples(const float* samples, size_t num_samples); 51 void WriteSamples(const int16_t* samples, size_t num_samples); 55 size_t num_samples() const override { return num_samples_; } in num_samples() function 78 size_t ReadSamples(size_t num_samples, float* samples); 79 size_t ReadSamples(size_t num_samples, int16_t* samples); 83 size_t num_samples() const override { return num_samples_; } in num_samples() function 109 size_t num_samples);
|
D | wav_header.cc | 66 size_t num_samples) { in CheckWavParameters() argument 104 if (num_samples > max_samples) in CheckWavParameters() 108 if (num_samples % num_channels != 0) in CheckWavParameters() 153 size_t num_samples) { in WriteWavHeader() argument 155 bytes_per_sample, num_samples)); in WriteWavHeader() 158 const size_t bytes_in_payload = bytes_per_sample * num_samples; in WriteWavHeader() 188 size_t* num_samples) { in ReadWavHeader() argument 217 *num_samples = bytes_in_payload / *bytes_per_sample; in ReadWavHeader() 239 *bytes_per_sample, *num_samples); in ReadWavHeader()
|
/external/tensorflow/tensorflow/python/kernel_tests/random/ |
D | multinomial_op_test.py | 40 def composed_sampler(logits, num_samples): argument 43 tensor_shape.TensorShape([num_samples]))) 64 num_samples = 1000 66 logits, num_samples, output_dtype=output_dtype)) 67 self.assertAllEqual([[1] * num_samples, [2] * num_samples], samples) 112 num_samples = 21000 122 composed_freqs = self._do_sampling(logits, num_samples, composed_sampler) 123 native_freqs = self._do_sampling(logits, num_samples, native_sampler) 138 def _make_ops(self, num_samples, seed=None): argument 142 sample_op1 = random_ops.multinomial(logits, num_samples, seed) [all …]
|
/external/webrtc/webrtc/modules/audio_coding/neteq/ |
D | statistics_calculator.cc | 143 void StatisticsCalculator::ExpandedVoiceSamples(size_t num_samples) { in ExpandedVoiceSamples() argument 144 expanded_speech_samples_ += num_samples; in ExpandedVoiceSamples() 147 void StatisticsCalculator::ExpandedNoiseSamples(size_t num_samples) { in ExpandedNoiseSamples() argument 148 expanded_noise_samples_ += num_samples; in ExpandedNoiseSamples() 151 void StatisticsCalculator::PreemptiveExpandedSamples(size_t num_samples) { in PreemptiveExpandedSamples() argument 152 preemptive_samples_ += num_samples; in PreemptiveExpandedSamples() 155 void StatisticsCalculator::AcceleratedSamples(size_t num_samples) { in AcceleratedSamples() argument 156 accelerate_samples_ += num_samples; in AcceleratedSamples() 159 void StatisticsCalculator::AddZeros(size_t num_samples) { in AddZeros() argument 160 added_zero_samples_ += num_samples; in AddZeros() [all …]
|
D | statistics_calculator.h | 42 void ExpandedVoiceSamples(size_t num_samples); 46 void ExpandedNoiseSamples(size_t num_samples); 50 void PreemptiveExpandedSamples(size_t num_samples); 53 void AcceleratedSamples(size_t num_samples); 56 void AddZeros(size_t num_samples); 62 void LostSamples(size_t num_samples); 67 void IncreaseCounter(size_t num_samples, int fs_hz); 73 void SecondaryDecodedSamples(int num_samples);
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | statistical_testing_test.py | 98 num_samples = 5000 102 num_samples, 0., 1., false_fail_rate=1e-6, false_pass_rate=1e-6) 108 samples = rng.uniform(size=num_samples).astype(np.float32) 119 num_samples = 5000 123 samples = rng.uniform(size=num_samples).astype(np.float32) 141 num_samples = 5000 145 samples = rng.uniform(size=num_samples).astype(np.float32) 166 num_samples = 4000 171 num_samples, 0., 1., num_samples, 0., 1., 178 samples1 = rng.uniform(size=num_samples).astype(np.float32) [all …]
|
/external/libxaac/decoder/ |
D | ixheaacd_mps_hybrid_filt.c | 50 WORD32 num_samples, WORD32 *filt_coeff) in ixheaacd_mps_hyb_filt_type1() argument 63 for (i = 0; i < num_samples; i++) { in ixheaacd_mps_hyb_filt_type1() 110 WORD32 num_samples, WORD32 *filt_coeff) in ixheaacd_mps_hyb_filt_type2() argument 123 for (i = 0; i < num_samples; i++) { in ixheaacd_mps_hyb_filt_type2() 175 WORD32 num_bands, WORD32 num_samples, in ixheaacd_mps_qmf_hybrid_analysis() argument 184 lf_samples_shift = BUFFER_LEN_LF_MPS - num_samples; in ixheaacd_mps_qmf_hybrid_analysis() 185 hf_samples_shift = BUFFER_LEN_HF_MPS - num_samples; in ixheaacd_mps_qmf_hybrid_analysis() 191 handle->lf_buffer[k][n].re = handle->lf_buffer[k][n + num_samples].re; in ixheaacd_mps_qmf_hybrid_analysis() 192 handle->lf_buffer[k][n].im = handle->lf_buffer[k][n + num_samples].im; in ixheaacd_mps_qmf_hybrid_analysis() 197 for (n = 0; n < num_samples; n++) { in ixheaacd_mps_qmf_hybrid_analysis() [all …]
|
/external/tensorflow/tensorflow/python/keras/ |
D | model_subclassing_test.py | 416 num_samples = 1000 428 x1 = array_ops.ones((num_samples, input_dim)) 429 x2 = array_ops.ones((num_samples, input_dim)) 586 num_samples = 100 598 x = np.ones((num_samples, input_dim)) 599 y = np.zeros((num_samples, num_classes)) 606 num_samples = 1000 618 x1 = np.ones((num_samples, input_dim)) 619 x2 = np.ones((num_samples, input_dim)) 620 y1 = np.zeros((num_samples, num_classes[0])) [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | random_poisson_op.cc | 73 int num_rate, int num_samples, 80 int num_rate, int num_samples, in operator ()() 105 auto DoWork = [num_samples, num_rate, &rng, samples_flat, rate_flat]( in operator ()() 115 const int64 rate_idx = output_idx / num_samples; in operator ()() 134 for (int64 sample_idx = output_idx % num_samples; in operator ()() 135 sample_idx < num_samples && output_idx < limit_output; in operator ()() 196 for (int64 sample_idx = output_idx % num_samples; in operator ()() 197 sample_idx < num_samples && output_idx < limit_output; in operator ()() 269 num_rate * num_samples, kElementCost, DoWork); in operator ()() 294 const int64 num_samples = samples_shape.num_elements(); in Compute() local [all …]
|
D | multinomial_op_gpu.cu.cc | 43 const int32 num_samples, const float* scores, in MultinomialKernel() argument 62 int num_classes, int num_samples, in operator ()() 73 bsc.set(1, num_samples); in operator ()() 81 oso.set(1, num_samples); in operator ()() 83 Eigen::array<int, 3> bsc{batch_size, num_samples, num_classes}; in operator ()() 85 Eigen::array<int, 3> oso{1, num_samples, 1}; in operator ()() 105 /*in_dim0=*/batch_size * num_samples, in operator ()() 112 const int32 work_items = batch_size * num_samples * num_classes; in operator ()() 116 num_samples, scores.data(), maxima.data(), in operator ()()
|
D | multinomial_op.cc | 51 int num_classes, int num_samples, 77 int num_classes, int num_samples, in operator ()() 86 auto DoWork = [ctx, num_samples, num_classes, &gen, &output, &logits]( in operator ()() 94 gen_copy.Skip(start_row * (num_samples + 3) / 4); in operator ()() 128 for (int64 j = 0; j < num_samples; ++j) { in operator ()() 137 50 * (num_samples * std::log(num_classes) / std::log(2) + num_classes); in operator ()() 163 const int num_samples = num_samples_t.scalar<int>()(); in DoCompute() local 164 OP_REQUIRES(ctx, num_samples >= 0, in DoCompute() 166 "num_samples should be nonnegative, got ", num_samples)); in DoCompute() 183 ctx, ctx->allocate_output(0, TensorShape({batch_size, num_samples}), in DoCompute() [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | test_util.py | 43 num_samples=int(1e5), num_threshold=int(1e3), seed=42, argument 85 y = dist.sample(num_samples, seed=seed) 86 y = array_ops.reshape(y, shape=[num_samples, -1]) 101 self.assertAllClose(probs_, counts_ / num_samples, 106 num_samples=int(1e5), seed=24, argument 129 x = math_ops.cast(dist.sample(num_samples, seed=seed), dtypes.float32) 201 num_samples=int(1e5), argument 291 def monte_carlo_hypersphere_volume(dist, num_samples, radius, center): argument 293 x = dist.sample(num_samples, seed=seed) 302 … values=[num_samples, radius, center] + dist._graph_parents): # pylint: disable=protected-access [all …]
|
/external/webrtc/webrtc/modules/video_coding/utility/ |
D | moving_average.h | 24 bool GetAverage(size_t num_samples, T* average); 44 bool MovingAverage<T>::GetAverage(size_t num_samples, T* avg) { in GetAverage() argument 45 if (num_samples > samples_.size()) in GetAverage() 49 while (num_samples < samples_.size()) { in GetAverage() 54 *avg = sum_ / static_cast<T>(num_samples); in GetAverage()
|
/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/ |
D | directed_interleave_dataset_test.py | 59 def _testSampleFromDatasetsHelper(self, weights, num_datasets, num_samples): argument 66 dataset = dataset.take(num_samples) 70 for _ in range(num_samples): 79 num_samples = 5000 88 freqs = self._testSampleFromDatasetsHelper(probs, classes, num_samples) 89 self.assertLess(self._chi2(probs, freqs / num_samples), 1e-2) 93 freqs = self._testSampleFromDatasetsHelper(probs_ds, classes, num_samples) 94 self.assertLess(self._chi2(probs, freqs / num_samples), 1e-2)
|