/external/tensorflow/tensorflow/python/keras/layers/ |
D | kernelized_test.py | 69 _ = kernel_layers.RandomFourierFeatures(output_dim=-3, scale=2.0) 83 _ = kernel_layers.RandomFourierFeatures(output_dim=10, scale=0.0) 88 rff_layer = kernel_layers.RandomFourierFeatures(output_dim=10, scale=3.0) 100 output_dim=10, 104 self.assertEqual(rff_layer.output_dim, 10) 115 output_dim=10, 135 kernel_layers.RandomFourierFeatures(output_dim=4, name='rff')(inputs) 136 kernel_layers.RandomFourierFeatures(output_dim=10, scale=2.0)(inputs) 142 output_dim=7, name='random_fourier_features', trainable=True) 153 output_dim=5, [all …]
|
D | kernelized.py | 132 output_dim, argument 138 if output_dim <= 0: 141 output_dim)) 152 self.output_dim = output_dim 173 self.kernel_initializer, shape=(input_dim, self.output_dim)) 177 shape=(input_dim, self.output_dim), 184 shape=(self.output_dim,), 216 return input_shape[:-1].concatenate(self.output_dim) 223 'output_dim': self.output_dim,
|
D | embeddings.py | 93 output_dim, argument 110 self.output_dim = output_dim 130 shape=(self.input_dim, self.output_dim), 137 shape=(self.input_dim, self.output_dim), 153 return input_shape + (self.output_dim,) 172 return (input_shape[0],) + tuple(in_lens) + (self.output_dim,) 184 'output_dim': self.output_dim,
|
D | wrappers_test.py | 302 output_dim = 2 306 target_dim = 2 * output_dim if mode == 'concat' else output_dim 313 rnn(output_dim), merge_mode=mode, input_shape=(timesteps, dim))) 347 output_dim = 2 353 rnn(output_dim), input_shape=(timesteps, dim))) 366 output_dim = 2 371 target_dim = 2 * output_dim if mode == 'concat' else output_dim 377 rnn(output_dim, return_sequences=True), 380 model.add(keras.layers.Bidirectional(rnn(output_dim), merge_mode=mode)) 387 rnn(output_dim), merge_mode=mode)(inputs) [all …]
|
D | cudnn_recurrent_test.py | 398 output_dim = 2 402 target_dim = 2 * output_dim if mode == 'concat' else output_dim 409 rnn(output_dim), merge_mode=mode, input_shape=(None, dim))) 422 rnn(output_dim, return_sequences=True), 425 model.add(keras.layers.Bidirectional(rnn(output_dim), merge_mode=mode)) 432 rnn(output_dim), merge_mode=mode)( 441 rnn(output_dim, stateful=True), merge_mode=mode)(
|
D | embeddings_test.py | 78 layer = keras.layers.Embedding(output_dim=2, input_dim=2) 88 l = keras.layers.Embedding(output_dim=2, input_dim=2)
|
D | recurrent.py | 152 output_dim = cell.output_size 154 output_dim = cell.state_size[0] 156 output_dim = cell.state_size 158 tensor_shape.as_shape(output_dim).as_list()) 450 output_dim = tensor_shape.as_shape(flat_output_size).as_list() 453 output_shape = tensor_shape.as_shape([time_step, batch] + output_dim) 455 output_shape = tensor_shape.as_shape([batch, time_step] + output_dim) 457 output_shape = tensor_shape.as_shape([batch] + output_dim)
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | hdf5_format_test.py | 103 output_dim = 3 117 (keras.layers.Conv1D(output_dim, size, use_bias=False)), 118 [np.random.random((output_dim, input_dim, size, 1))], 122 (keras.layers.Conv2D(output_dim, size, 124 [np.random.random((output_dim, input_dim, size, size))], 128 (keras.layers.Conv2DTranspose(output_dim, size, 131 [np.random.random((output_dim, input_dim, size, size))], 135 (keras.layers.Conv2DTranspose(output_dim, size, 138 [np.random.random((size, size, input_dim, output_dim))], 142 (keras.layers.Conv3D(output_dim, size, [all …]
|
/external/tensorflow/tensorflow/compiler/xla/client/lib/ |
D | conv_grad_size_util.cc | 70 TF_ASSIGN_OR_RETURN(SpatialDimensionOutputSizeAndPadding output_dim, in ConvGradExtractAndVerifyDimension() 73 if (output_size != output_dim.output_size) { in ConvGradExtractAndVerifyDimension() 76 output_size, ", computed = ", output_dim.output_size, in ConvGradExtractAndVerifyDimension() 83 dim.output_size = (output_dim.output_size - 1) * stride + 1; in ConvGradExtractAndVerifyDimension() 85 dim.pad_before = effective_filter_size - 1 - output_dim.pad_before; in ConvGradExtractAndVerifyDimension()
|
/external/tensorflow/tensorflow/contrib/kernel_methods/python/mappers/ |
D | random_fourier_features.py | 60 def __init__(self, input_dim, output_dim, stddev=1.0, seed=1, name=None): argument 82 self._output_dim = output_dim 104 def output_dim(self): member in RandomFourierFeatureMapper
|
D | dense_kernel_mapper.py | 56 def output_dim(self): member in DenseKernelMapper
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | applications_test.py | 46 def test_feature_extration_model(self, model_fn, output_dim): argument 49 self.assertEqual(model.output_shape[-1], output_dim)
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | batch_to_space_nd_test.cc | 25 int input_dim, int output_dim) { in GetIndexRange() argument 29 output_dim, &index_start, &index_end); in GetIndexRange()
|
/external/tensorflow/tensorflow/python/debug/examples/ |
D | debug_mnist.py | 77 def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): argument 83 weights = weight_variable([input_dim, output_dim]) 85 biases = bias_variable([output_dim])
|
/external/tensorflow/tensorflow/core/ops/ |
D | image_ops.cc | 167 DimensionHandle output_dim; in CombinedNMSShapeFn() local 170 TF_RETURN_IF_ERROR(c->MakeDimForScalarInput(3, &output_dim)); in CombinedNMSShapeFn() 171 if (c->ValueKnown(output_dim) && c->Value(output_dim) <= 0) { in CombinedNMSShapeFn() 181 output_size = c->Value(output_dim); in CombinedNMSShapeFn() 188 output_size = std::min(c->Value(output_dim), in CombinedNMSShapeFn() 855 DimensionHandle output_dim; in __anon6a71d27f1802() local 856 TF_RETURN_IF_ERROR(c->MakeDimForScalarInput(2, &output_dim)); in __anon6a71d27f1802() 857 c->set_output(0, c->MakeShape({output_dim})); in __anon6a71d27f1802()
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | indexed_array_analysis.cc | 215 for (int64 output_dim : output_dims) { in FoldGatherOfGather() local 216 simulated_index.insert(simulated_index.begin() + output_dim, in FoldGatherOfGather() 537 for (int64 output_dim : operand->output_dims()) { in ReshapeToAddDegenerateDims() local 538 output_dims_bitvector[output_dim] = true; in ReshapeToAddDegenerateDims() 564 for (int64 output_dim : new_output_dims) { in ReshapeToAddDegenerateDims() local 565 EraseAt(&new_source_shape_dims, output_dim); in ReshapeToAddDegenerateDims() 711 int64 output_dim = scalar_indexed->output_dims()[i]; in FoldReshapeOfGatherNoDegenerateDims() local 713 reshape_passthrough_dims, output_dim); in FoldReshapeOfGatherNoDegenerateDims() 877 auto is_broadcasted_dim = [&](int64 output_dim) { in ComputeArrayForElementwiseBinaryOp() argument 878 return absl::c_find(broadcast_dims, output_dim) == broadcast_dims.end(); in ComputeArrayForElementwiseBinaryOp()
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | mnist_with_summaries.py | 78 def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): argument 89 weights = weight_variable([input_dim, output_dim]) 92 biases = bias_variable([output_dim])
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | multi_gpu_utils_test.py | 43 output_dim = 1 55 model.add(keras.layers.Dense(output_dim)) 58 y = np.random.random((num_samples, output_dim))
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | keras_embedding_model_correctness_test.py | 38 output_dim=10)(word_ids) 92 output_dim=10,
|
D | keras_lstm_model_correctness_test.py | 38 output_dim=10)(word_ids)
|
D | keras_stateful_lstm_model_correctness_test.py | 59 output_dim=10)(word_ids)
|
/external/tensorflow/tensorflow/python/keras/ |
D | backend_test.py | 1006 output_dim = 3 1012 (num_samples, output_dim)).astype(np.float32) 1013 w_i_val = np.random.random((input_dim, output_dim)).astype(np.float32) 1014 w_o_val = np.random.random((output_dim, output_dim)).astype(np.float32) 1052 self.assertEqual(last_output.shape.as_list(), [num_samples, output_dim]) 1054 [num_samples, timesteps, output_dim]) 1056 self.assertEqual(state.shape.as_list(), [num_samples, output_dim]) 1096 output_dim = 3 1102 (num_samples, output_dim)).astype(np.float32) 1103 w_i_val = np.random.random((input_dim, output_dim)).astype(np.float32) [all …]
|
D | optimizers_test.py | 34 def _get_model(input_dim, num_hidden, output_dim): argument 39 model.add(keras.layers.Dense(output_dim, activation='softmax'))
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | broadcast_to_ops_test.py | 60 for output_dim in range(input_dim, 6): 63 output_shape = [2] * output_dim
|
/external/tensorflow/tensorflow/contrib/kernel_methods/python/ |
D | kernel_estimators.py | 93 new_dim = sum(mapper.output_dim for mapper in column_kernel_mappers)
|