Searched refs:periodicities (Results 1 – 10 of 10) sorted by relevance
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/state_space_models/ |
D | structural_ensemble.py | 99 periodicities, argument 134 periodicity_list = nest.flatten(periodicities) 186 periodicities, argument 236 if periodicities is None: 237 periodicities = [] 238 periodicity_list = nest.flatten(periodicities)
|
D | structural_ensemble_test.py | 108 periodicities=[], 134 periodicities=None,
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | estimators.py | 300 self, periodicities, input_window_size, output_window_size, argument 356 periodicities=periodicities, num_features=num_features, 370 periodicities=periodicities, 475 periodicities, argument 527 periodicities=periodicities, 596 periodicities, argument 684 periodicities=periodicities,
|
D | ar_model.py | 235 periodicities, argument 296 if periodicities is None or not periodicities: 297 periodicities = [] 298 elif (not isinstance(periodicities, list) and 299 not isinstance(periodicities, tuple)): 300 periodicities = [periodicities] 301 self._periodicities = [int(p) for p in periodicities] 920 periodicities, argument 937 periodicities=periodicities,
|
D | estimators_test.py | 188 periodicities=10, input_window_size=10, output_window_size=6, 200 periodicities=10, input_window_size=10, output_window_size=6, 214 num_features=1, periodicities=10, model_dir=model_dir, dtype=dtype, 223 num_features=1, periodicities=[], model_dir=self.get_temp_dir(), 236 periodicities=10,
|
D | ar_model_test.py | 113 periodicities=self.period, 223 periodicities=10, num_features=1, 244 model = ar_model.ARModel(periodicities=2, 265 model = ar_model.ARModel(periodicities=2, 286 model = ar_model.ARModel(periodicities=2, 336 model = ar_model.ARModel(periodicities=2,
|
D | head_test.py | 343 periodicities=None, 354 periodicities=10, input_window_size=10, output_window_size=6,
|
/external/tensorflow/tensorflow/contrib/timeseries/examples/ |
D | predict.py | 54 periodicities=100, num_features=1, cycle_num_latent_values=5) 63 periodicities=100, input_window_size=10, output_window_size=6,
|
D | known_anomaly.py | 58 periodicities=12, 76 periodicities=12,
|
D | multivariate.py | 51 periodicities=[], num_features=5)
|