Home
last modified time | relevance | path

Searched refs:polynomial (Results 1 – 25 of 48) sorted by relevance

12

/external/eigen/unsupported/doc/examples/
DPolynomialUtils1.cpp11 Eigen::Matrix<double,5,1> polynomial; in main() local
12 roots_to_monicPolynomial( roots, polynomial ); in main()
14 for( int i=0; i<4; ++i ){ cout << polynomial[i] << ".x^" << i << "+ "; } in main()
15 cout << polynomial[4] << ".x^4" << endl; in main()
18 evaluation[i] = poly_eval( polynomial, roots[i] ); } in main()
DPolynomialSolver1.cpp14 Eigen::Matrix<double,6,1> polynomial; in main() local
15 roots_to_monicPolynomial( roots, polynomial ); in main()
17 PolynomialSolver<double,5> psolve( polynomial ); in main()
/external/eigen/unsupported/Eigen/
DPolynomials29 * \brief This module provides a QR based polynomial solver.
44 and a QR based polynomial solver.
48 polynomials, computing estimates about polynomials and next the QR based polynomial
68 evaluates a polynomial at a given point using stabilized H&ouml;rner method.
70 …The following code: first computes the coefficients in the monomial basis of the monic polynomial
71 then, it evaluates the computed polynomial, using a stabilized H&ouml;rner method.
81 …um bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e.
91 …(the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e.
98 \section QR polynomial solver class
99 …Computes the complex roots of a polynomial by computing the eigenvalues of the associated companio…
[all …]
/external/bouncycastle/bcprov/src/main/java/org/bouncycastle/math/field/
DGenericPolynomialExtensionField.java12 GenericPolynomialExtensionField(FiniteField subfield, Polynomial polynomial) in GenericPolynomialExtensionField() argument
15 this.minimalPolynomial = polynomial; in GenericPolynomialExtensionField()
/external/bouncycastle/repackaged/bcprov/src/main/java/com/android/org/bouncycastle/math/field/
DGenericPolynomialExtensionField.java13 GenericPolynomialExtensionField(FiniteField subfield, Polynomial polynomial) in GenericPolynomialExtensionField() argument
16 this.minimalPolynomial = polynomial; in GenericPolynomialExtensionField()
/external/mesa3d/src/gallium/auxiliary/gallivm/
Df.cpp88 const boost::math::tools::polynomial<boost::math::ntl::RR>& n, in show_extra()
89 const boost::math::tools::polynomial<boost::math::ntl::RR>& d, in show_extra()
/external/e2fsprogs/lib/ext2fs/
Dcrc32c.c149 uint32_t polynomial EXT2FS_ATTR((unused))) in crc32_le_generic()
156 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); in crc32_le_generic()
200 uint32_t polynomial EXT2FS_ATTR((unused))) in crc32_be_generic()
208 (crc << 1) ^ ((crc & 0x80000000) ? polynomial : in crc32_be_generic()
/external/swiftshader/third_party/LLVM/test/Transforms/LoopStrengthReduce/
Dquadradic-exit-value.ll3 ; The value of %r is dependent on a polynomial iteration expression.
/external/webrtc/webrtc/modules/video_processing/test/
DcreateTable.m13 % is a second-order polynomial intersecting the points (0,0)
15 % 2. From r0 to r1, the compander is a third-order polynomial
/external/llvm/test/Transforms/LoopStrengthReduce/
Dquadradic-exit-value.ll6 ; The value of %r is dependent on a polynomial iteration expression.
/external/swiftshader/third_party/LLVM/test/Analysis/ScalarEvolution/
Dtrip-count10.ll78 ; Trip counts for non-polynomial iterations. It's theoretically possible
/external/swiftshader/third_party/llvm-7.0/llvm/test/Analysis/IVUsers/
Dquadradic-exit-value.ll14 ; The value of %r is dependent on a polynomial iteration expression.
/external/swiftshader/third_party/llvm-7.0/llvm/test/Analysis/ScalarEvolution/
Dtrip-count10.ll78 ; Trip counts for non-polynomial iterations. It's theoretically possible
/external/tensorflow/tensorflow/contrib/distributions/python/ops/
Dpoisson_lognormal.py83 grid, probs = np.polynomial.hermite.hermgauss(deg=quadrature_size)
Dvector_diffeomixture.py106 grid, probs = np.polynomial.hermite.hermgauss(deg=quadrature_size)
/external/llvm/test/Analysis/ScalarEvolution/
Dtrip-count10.ll78 ; Trip counts for non-polynomial iterations. It's theoretically possible
/external/python/cpython3/Doc/library/
Dbinascii.rst123 initial CRC, and return the result. This uses the CRC-CCITT polynomial
/external/llvm/lib/Target/Hexagon/
DHexagonIntrinsicsV4.td41 // Vector polynomial multiply halfwords
/external/swiftshader/third_party/llvm-7.0/llvm/lib/Target/Hexagon/
DHexagonIntrinsicsV4.td41 // Vector polynomial multiply halfwords
/external/python/cpython2/Doc/library/
Dbinascii.rst105 returning the result. This uses the CRC-CCITT polynomial
/external/skqp/src/compute/skc/platforms/cl_12/kernels/
Drasterize.cl2312 // Precompute cubic polynomial coefficients from transformed control
2314 // loop and then evaluate the polynomial in Horner form.
2412 // shuffle in the polynomial coefficients their source lane
2598 // Precompute quadratic polynomial coefficients from control cage so
2600 // then evaluate the polynomial in Horner form.
2694 // shuffle in the polynomial coefficients their source lane
/external/skia/src/compute/skc/platforms/cl_12/kernels/
Drasterize.cl2312 // Precompute cubic polynomial coefficients from transformed control
2314 // loop and then evaluate the polynomial in Horner form.
2412 // shuffle in the polynomial coefficients their source lane
2598 // Precompute quadratic polynomial coefficients from control cage so
2600 // then evaluate the polynomial in Horner form.
2694 // shuffle in the polynomial coefficients their source lane
/external/llvm/lib/Target/AArch64/
DAArch64SchedVulcan.td487 // ASIMD polynomial (8x8) multiply long
838 // Crypto polynomial (64x64) multiply long
/external/llvm/include/llvm/IR/
DIntrinsicsAArch64.td205 // 64-bit polynomial multiply really returns an i128, which is not legal. Fake
/external/swiftshader/third_party/llvm-7.0/llvm/include/llvm/IR/
DIntrinsicsAArch64.td207 // 64-bit polynomial multiply really returns an i128, which is not legal. Fake

12