/external/libvpx/libvpx/vp9/common/ |
D | vp9_scale.c | 82 sf->predict[0][0][0] = vpx_convolve_copy; 83 sf->predict[0][0][1] = vpx_convolve_avg; 84 sf->predict[0][1][0] = vpx_convolve8_vert; 85 sf->predict[0][1][1] = vpx_convolve8_avg_vert; 86 sf->predict[1][0][0] = vpx_convolve8_horiz; 87 sf->predict[1][0][1] = vpx_convolve8_avg_horiz; 90 sf->predict[0][0][0] = vpx_scaled_vert; 91 sf->predict[0][0][1] = vpx_scaled_avg_vert; 92 sf->predict[0][1][0] = vpx_scaled_vert; 93 sf->predict[0][1][1] = vpx_scaled_avg_vert; [all …]
|
/external/libvpx/libvpx/test/ |
D | idct_test.cc | 36 predict = new Buffer<uint8_t>(4, 4, 3); in SetUp() 37 ASSERT_TRUE(predict != NULL); in SetUp() 38 ASSERT_TRUE(predict->Init()); in SetUp() 46 delete predict; in TearDown() 53 Buffer<uint8_t> *predict; member in __anondd905de80111::IDCTTest 60 predict->Set(0); in TEST_P() 63 ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), in TEST_P() 64 predict->stride(), output->TopLeftPixel(), in TEST_P() 78 predict->Set(0); in TEST_P() 81 ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), in TEST_P() [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | gru_v2_test.py | 106 model.predict(x_train) 163 y_1 = gru_model.predict(x_train) 166 y_2 = gru_model.predict(x_train) 174 y_3 = cudnn_model.predict(x_train) 177 y_4 = cudnn_model.predict(x_train) 211 y_ref = model.predict(x) 216 y = cloned_model.predict(x) 236 y_1 = cpu_model.predict(x_train) 243 y_2 = gpu_model.predict(x_train) 255 y_3 = canonical_model.predict(x_train) [all …]
|
D | convolutional_recurrent_test.py | 71 state = model.predict(inputs) 113 out1 = model.predict(np.ones_like(inputs)) 118 out2 = model.predict(np.ones_like(inputs)) 126 out3 = model.predict(np.ones_like(inputs)) 131 out4 = model.predict(np.ones_like(inputs)) 135 out5 = model.predict(np.ones_like(inputs)) 194 reference_outputs = model.predict(test_inputs) 202 outputs = clone.predict(test_inputs)
|
D | lstm_v2_test.py | 259 state = model.predict(inputs) 277 model.predict(inputs) 330 y_1 = lstm_model.predict(x_train) 333 y_2 = lstm_model.predict(x_train) 339 y_3 = cudnn_model.predict(x_train) 342 y_4 = cudnn_model.predict(x_train) 437 y_ref = lstm_model.predict(x_train) 442 y = unified_lstm_model.predict(x_train) 470 model.predict(x_train) 501 y_ref = model.predict(x) [all …]
|
D | gru_test.py | 105 gru_model.predict(x_train) 141 out1 = model.predict(np.ones((num_samples, timesteps))) 147 out2 = model.predict(np.ones((num_samples, timesteps))) 155 out3 = model.predict(np.ones((num_samples, timesteps))) 160 out4 = model.predict(np.ones((num_samples, timesteps))) 164 out5 = model.predict(np.ones((num_samples, timesteps))) 173 out6 = model.predict(left_padded_input) 180 out7 = model.predict(right_padded_input)
|
D | simplernn_test.py | 160 out1 = model.predict(np.ones((num_samples, timesteps))) 166 out2 = model.predict(np.ones((num_samples, timesteps))) 174 out3 = model.predict(np.ones((num_samples, timesteps))) 179 out4 = model.predict(np.ones((num_samples, timesteps))) 183 out5 = model.predict(np.ones((num_samples, timesteps))) 192 out6 = model.predict(left_padded_input) 199 out7 = model.predict(right_padded_input)
|
D | cudnn_recurrent_test.py | 92 state = model.predict(inputs) 119 out = model.predict(np.ones((num_samples, timesteps, input_size))) 215 out1 = model.predict(np.ones((num_samples, timesteps))) 221 out2 = model.predict(np.ones((num_samples, timesteps))) 229 out3 = model.predict(np.ones((num_samples, timesteps))) 234 out4 = model.predict(np.ones((num_samples, timesteps))) 238 out5 = model.predict(np.ones((num_samples, timesteps))) 313 self.assertAllClose(model.predict(inputs), cudnn_model.predict(inputs), 389 self.assertAllClose(model.predict(inputs), cudnn_model.predict(inputs),
|
D | merge_test.py | 48 out = model.predict([x1, x2, x3]) 80 out = model.predict([x1, x2]) 114 out = model.predict([x1, x2, x3]) 128 out = model.predict([x1, x2]) 142 out = model.predict([x1, x2]) 156 out = model.predict([x1, x2]) 171 out = model.predict([x1, x2]) 203 out = model.predict([x1, x2]) 215 out = model.predict([x1, x2])
|
D | lstm_test.py | 276 state = model.predict(inputs) 293 outputs = model.predict(inputs) 363 out1 = model.predict(np.ones((num_samples, timesteps))) 369 out2 = model.predict(np.ones((num_samples, timesteps))) 377 out3 = model.predict(np.ones((num_samples, timesteps))) 382 out4 = model.predict(np.ones((num_samples, timesteps))) 386 out5 = model.predict(np.ones((num_samples, timesteps))) 395 out6 = model.predict(left_padded_input) 402 out7 = model.predict(right_padded_input)
|
D | normalization_test.py | 104 out = model.predict(x) 124 out = model.predict(x) 265 out = model.predict(x) 326 x1 = model.predict(val_a) 328 x2 = model.predict(val_a) 336 x2 = model.predict(val_a) 343 x1 = model.predict(val_a) 345 x2 = model.predict(val_a) 382 out = model.predict(val_a) 399 out = model.predict(x) [all …]
|
/external/webp/src/enc/ |
D | predictor_enc.c | 150 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, in NearLosslessComponent() argument 152 const int residual = (value - predict) & 0xff; in NearLosslessComponent() 153 const int boundary_residual = (boundary - predict) & 0xff; in NearLosslessComponent() 189 static uint32_t NearLossless(uint32_t value, uint32_t predict, in NearLossless() argument 197 return VP8LSubPixels(value, predict); in NearLossless() 205 a = NearLosslessDiff(value >> 24, predict >> 24); in NearLossless() 207 a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); in NearLossless() 209 g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, in NearLossless() 214 new_green = ((predict >> 8) + g) & 0xff; in NearLossless() 221 (predict >> 16) & 0xff, 0xff - new_green, in NearLossless() [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | estimator_input_test.py | 199 predictions = np.array(list(est2.predict(x=boston_input))) 215 predictions = np.array(list(est.predict(x=boston.data))) 233 predictions = np.array(list(est.predict(x=boston_input))) 250 predictions = est.predict(x=iris.data) 251 predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] 273 predictions = list(est.predict(x=iris_data)) 274 predictions_class = list(est.predict(x=iris_data, outputs=['class'])) 292 predictions = list(est.predict(x=iris.data)) 309 predictions = list(est.predict(x=iris.data)) 322 output = list(est.predict(input_fn=input_fn)) [all …]
|
D | dnn.py | 398 def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, member in DNNClassifier 428 return super(DNNClassifier, self).predict( 458 preds = super(DNNClassifier, self).predict( 493 preds = super(DNNClassifier, self).predict( 714 def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, member in DNNRegressor 744 return super(DNNRegressor, self).predict( 774 preds = super(DNNRegressor, self).predict(
|
D | estimators_test.py | 71 prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) 111 prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) 157 estimator_with_fe_fn.predict(input_fn=input_fn, as_iterable=True)) 160 estimator_without_fe_fn.predict(input_fn=input_fn, as_iterable=True))
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | hdf5_format_test.py | 62 ref_y = model.predict(x) 65 y = model.predict(x) 79 y = model.predict(x) 88 y = model.predict(x) 92 y = model.predict(x) 97 y = model.predict(x) 247 ref_y = model.predict(x) 255 y = model.predict(x) 369 out = model.predict(x) 377 out2 = new_model.predict(x) [all …]
|
D | saved_model_test.py | 69 ref_y = model.predict(x) 75 y = loaded_model.predict(x) 87 ref_y = model.predict(x) 93 y = loaded_model.predict(x) 111 ref_y = model.predict(x) 117 y = loaded_model.predict(x) 132 ref_y = model.predict(x) 138 y = loaded_model.predict(x) 154 ref_y = model.predict(x) 163 y = loaded_model.predict(x) [all …]
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | keras_test.py | 633 model.predict(inputs) 635 model.predict(inputs, steps=2) 637 model.predict(inputs, batch_size=8) 668 model.predict(inputs) 670 model.predict(inputs, steps=2) 672 model.predict(inputs, batch_size=8) 706 outs = model.predict(inputs, steps=1) 735 predict_ground_truth = cpu_model.predict(inputs) 738 model_with_ds_strategy.predict(inputs, batch_size=4, steps=3), 744 model_with_ds_strategy.predict(inputs, batch_size=4), [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | estimator_test.py | 180 result_iter = classifier.predict(input_fn=_eval_input_fn) 276 model.predict(input_fn=_infer_ranking_train_input_fn) 340 result_iter = classifier.predict(input_fn=_eval_input_fn) 367 result_iter = classifier.predict(input_fn=_eval_input_fn) 394 result_iter = classifier.predict(input_fn=_eval_input_fn) 421 result_iter = model_upper.predict(input_fn=test_input_fn) 456 result_iter = model_upper.predict(input_fn=test_input_fn) 499 est.predict(input_fn=_eval_input_fn) 527 est.predict(input_fn=_infer_ranking_train_input_fn) 554 classifier.predict(input_fn=_eval_input_fn) [all …]
|
/external/tensorflow/tensorflow/contrib/timeseries/examples/ |
D | predict_test.py | 23 from tensorflow.contrib.timeseries.examples import predict 36 ) = predict.structural_ensemble_train_and_predict(_DATA_FILE) 49 upper_limit, lower_limit) = predict.ar_train_and_predict(_DATA_FILE)
|
/external/tensorflow/tensorflow/python/keras/wrappers/ |
D | scikit_learn.py | 89 Sequential.fit, Sequential.predict, Sequential.predict_classes, 225 def predict(self, x, **kwargs): member in KerasClassifier 318 def predict(self, x, **kwargs): member in KerasRegressor 332 kwargs = self.filter_sk_params(Sequential.predict, kwargs) 333 return np.squeeze(self.model.predict(x, **kwargs))
|
/external/tensorflow/tensorflow/lite/models/smartreply/ops/ |
D | predict.cc | 41 namespace predict { namespace 168 static TfLiteRegistration r = {predict::Init, predict::Free, predict::Prepare, in Register_PREDICT() 169 predict::Eval}; in Register_PREDICT()
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_dataset_test.py | 70 model.predict(iterator, steps=2) 110 model.predict(iterator, verbose=0) 183 model.predict(dataset, steps=2) 218 model.predict(dataset, batch_size=10, steps=2, verbose=0) 238 model.predict(dataset, verbose=0) 277 model.predict(predict_dataset_tuple, steps=1) 298 model.predict(predict_dataset_dict, steps=1) 320 model.predict(dataset, steps=2) 434 out = model.predict(dataset) 457 out = model.predict(dataset) [all …]
|
/external/tensorflow/tensorflow/contrib/tensor_forest/client/ |
D | random_forest_test.py | 81 predictions = list(classifier.predict(input_fn=predict_input_fn)) 104 predictions = list(regressor.predict(input_fn=predict_input_fn)) 134 predictions = list(classifier.predict(input_fn=input_fn)) 192 predictions = list(est.predict(input_fn=predict_input_fn)) 219 predictions = list(regressor.predict(input_fn=predict_input_fn)) 289 predictions = list(regressor.predict(input_fn=predict_input_fn)) 320 predictions = list(classifier.predict(input_fn=input_fn))
|
/external/libaom/libaom/test/ |
D | cfl_test.cc | 355 predict = ::testing::get<1>(this->GetParam())(tx_size); in SetUp() 361 cfl_predict_lbd_fn predict; member in __anon41cf28f70111::CFLPredictTest 368 predict(sub_luma_pels, chroma_pels, CFL_BUF_LINE, alpha_q3); in TEST_P() 386 predict(sub_luma_pels, chroma_pels, CFL_BUF_LINE, alpha_q3); in TEST_P() 401 predict = ::testing::get<1>(this->GetParam())(tx_size); in SetUp() 407 cfl_predict_hbd_fn predict; member in __anon41cf28f70111::CFLPredictHBDTest 415 predict(sub_luma_pels, chroma_pels, CFL_BUF_LINE, alpha_q3, bd); in TEST_P() 434 predict(sub_luma_pels, chroma_pels, CFL_BUF_LINE, alpha_q3, bd); in TEST_P()
|