/external/tensorflow/tensorflow/python/keras/engine/ |
D | partial_batch_padding_handler.py | 95 prediction = np.take(prediction_result, 99 if prediction.shape[0] == 1: 100 prediction = np.squeeze(prediction, axis=0) 101 return prediction 106 prediction = prediction_result[i] 107 prediction = np.take(prediction, np.nonzero( 108 padding_mask[:len(prediction)]), axis=0) 109 predictions.append(np.squeeze(prediction))
|
/external/tensorflow/tensorflow/lite/experimental/examples/lstm/ |
D | bidirectional_sequence_rnn_test.py | 123 prediction = tf.matmul(output, out_weights) + out_bias 124 output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS") 126 return x, prediction, output_class 128 def trainModel(self, x, prediction, output_class, sess): argument 133 tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) 161 x, prediction, output_class = self.buildModel( 167 return x, prediction, output_class, new_sess 214 x, prediction, output_class = self.buildModel( 216 self.trainModel(x, prediction, output_class, sess) 219 x, prediction, output_class, new_sess = self.saveAndRestoreModel( [all …]
|
D | unidirectional_sequence_rnn_test.py | 91 prediction = tf.matmul(outputs[-1], out_weights) + out_bias 92 output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS") 94 return x, prediction, output_class 96 def trainModel(self, x, prediction, output_class, sess): argument 101 tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) 139 x, prediction, output_class = self.buildModel(rnn_layer, is_dynamic_rnn) 144 return x, prediction, output_class, new_sess 186 x, prediction, output_class = self.buildModel( 188 self.trainModel(x, prediction, output_class, sess) 191 x, prediction, output_class, new_sess = self.saveAndRestoreModel( [all …]
|
D | unidirectional_sequence_lstm_test.py | 95 prediction = tf.matmul(outputs[-1], out_weights) + out_bias 96 output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS") 98 return x, prediction, output_class 100 def trainModel(self, x, prediction, output_class, sess): argument 105 tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) 127 x, prediction, output_class = self.buildModel(lstm_layer, is_dynamic_rnn) 132 return x, prediction, output_class, new_sess 178 x, prediction, output_class = self.buildModel( 180 self.trainModel(x, prediction, output_class, sess) 183 x, prediction, output_class, new_sess = self.saveAndRestoreModel( [all …]
|
D | bidirectional_sequence_lstm_test.py | 104 prediction = tf.matmul(output, out_weights) + out_bias 105 output_class = tf.nn.softmax(prediction, name="OUTPUT_CLASS") 107 return x, prediction, output_class 109 def trainModel(self, x, prediction, output_class, sess): argument 114 tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) 137 x, prediction, output_class = self.buildModel(fw_lstm_layer, bw_lstm_layer, 143 return x, prediction, output_class, new_sess 193 x, prediction, output_class = self.buildModel(self.buildLstmLayer(), 195 self.trainModel(x, prediction, output_class, sess) 198 x, prediction, output_class, new_sess = self.saveAndRestoreModel( [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ |
D | metric_spec_test.py | 47 def _fn2(prediction, label, weight=None): argument 48 self.assertEqual("p1_value", prediction) 53 def _fn3(prediction, target, weight=None): argument 54 self.assertEqual("p1_value", prediction) 201 def _fn2(prediction, label): argument 202 self.assertEqual("p1_value", prediction) 206 def _fn3(prediction, target): argument 207 self.assertEqual("p1_value", prediction) 374 def _fn1(prediction, weight=None): argument 375 del prediction, weight [all …]
|
/external/libavc/common/arm/ |
D | ih264_intra_pred_luma_4x4_a9q.s | 26 @* Contains function definitions for intra 4x4 Luma prediction . 62 @* Perform Intra prediction for luma_4x4 mode:vertical 65 @* Perform Intra prediction for luma_4x4 mode:vertical ,described in sec 8.3.1.2.1 135 @* Perform Intra prediction for luma_4x4 mode:horizontal 138 @* Perform Intra prediction for luma_4x4 mode:horizontal ,described in sec 8.3.1.2.2 217 @* Perform Intra prediction for luma_4x4 mode:DC 220 @* Perform Intra prediction for luma_4x4 mode:DC ,described in sec 8.3.1.2.3 356 @* Perform Intra prediction for luma_4x4 mode:Diagonal_Down_Left 359 @* Perform Intra prediction for luma_4x4 mode:Diagonal_Down_Left ,described in sec 8.3.1.2.4 438 @* Perform Intra prediction for luma_4x4 mode:Diagonal_Down_Right [all …]
|
D | ih264_intra_pred_luma_8x8_a9q.s | 26 @* Contains function definitions for intra 8x8 Luma prediction . 67 @* Reference sample filtering process for Intra_8x8 sample prediction 70 @* Perform Reference sample filtering process for Intra_8x8 sample prediction ,described in sec 8.… 152 @* Perform Intra prediction for luma_8x8 mode:vertical 155 @* Perform Intra prediction for luma_8x8 mode:vertical ,described in sec 8.3.2.2.2 225 @* Perform Intra prediction for luma_8x8 mode:horizontal 228 @* Perform Intra prediction for luma_8x8 mode:horizontal ,described in sec 8.3.2.2.2 305 @* Perform Intra prediction for luma_8x8 mode:DC 308 @* Perform Intra prediction for luma_8x8 mode:DC ,described in sec 8.3.2.2.3 416 @* Perform Intra prediction for luma_8x8 mode:Diagonal_Down_Left [all …]
|
D | ih264_intra_pred_luma_16x16_a9q.s | 26 @* Contains function definitions for intra 16x16 Luma prediction . 66 @* Perform Intra prediction for luma_16x16 mode:vertical 69 @* Perform Intra prediction for luma_16x16 mode:Vertical ,described in sec 8.3.3.1 147 @* Perform Intra prediction for luma_16x16 mode:horizontal 150 @* Perform Intra prediction for luma_16x16 mode:horizontal ,described in sec 8.3.3.2 225 @* Perform Intra prediction for luma_16x16 mode:DC 228 @* Perform Intra prediction for luma_16x16 mode:DC ,described in sec 8.3.3.3 349 @* Perform Intra prediction for luma_16x16 mode:PLANE 352 @* Perform Intra prediction for luma_16x16 mode:PLANE ,described in sec 8.3.3.4
|
D | ih264_intra_pred_chroma_a9q.s | 26 @* Contains function definitions for intra chroma prediction . 65 @* Perform Intra prediction for chroma_8x8 mode:DC 68 @* Perform Intra prediction for chroma_8x8 mode:DC ,described in sec 8.3.4.1 197 @* Perform Intra prediction for chroma_8x8 mode:Horizontal 200 @* Perform Intra prediction for chroma_8x8 mode:Horizontal ,described in sec 8.3.4.2 273 @* Perform Intra prediction for chroma_8x8 mode:vertical 276 @*Perform Intra prediction for chroma_8x8 mode:vertical ,described in sec 8.3.4.3 345 @* Perform Intra prediction for chroma_8x8 mode:PLANE 348 @* Perform Intra prediction for chroma_8x8 mode:PLANE ,described in sec 8.3.4.4
|
/external/python/google-api-python-client/samples/prediction/ |
D | README | 1 Before you can run the prediction sample prediction.py, you must load some csv 7 api: prediction
|
/external/tensorflow/tensorflow/lite/examples/label_image/ |
D | get_top_n_impl.h | 30 void get_top_n(T* prediction, int prediction_size, size_t num_results, in get_top_n() argument 42 value = prediction[i]; in get_top_n() 44 value = prediction[i] / 255.0; in get_top_n()
|
/external/v8/src/ |
D | handler-table.cc | 109 CatchPrediction prediction) { in SetRangeHandler() argument 111 HandlerPredictionField::encode(prediction); in SetRangeHandler() 165 CatchPrediction prediction = GetRangePrediction(i); in LookupRange() local 175 if (prediction_out) *prediction_out = prediction; in LookupRange() 201 CatchPrediction prediction = GetRangePrediction(i); in HandlerTableRangePrint() local 204 << " (prediction=" << prediction << ", data=" << handler_data << ")\n"; in HandlerTableRangePrint()
|
/external/arm-neon-tests/ |
D | InitCache.s | 5 ; and program flow prediction 39 ; Cortex-A8 program flow prediction 43 ORR r0, r0, #(0x1 <<11) ; Enable all forms of branch prediction 44 ;BIC r0, r0, #(0x1 << 11) ; Disable all forms of branch prediction
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | target_column_test.py | 35 prediction = constant_op.constant([[1.], [1.], [3.]]) 38 5. / 3, sess.run(target_column.loss(prediction, labels, {}))) 45 prediction = constant_op.constant([[1.], [1.], [3.]]) 49 sess.run(target_column.loss(prediction, labels, features)), 53 sess.run(target_column.training_loss(prediction, labels, features)),
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | estimator_input_test.py | 113 prediction, loss = (models.linear_regression_zero_init(features, labels)) 119 return prediction, loss, train_op 129 prediction, loss = (models.linear_regression_zero_init(features, labels)) 135 return prediction, loss, train_op 142 prediction, loss = (models.linear_regression_zero_init(features, labels)) 149 mode=mode, predictions=prediction, loss=loss, train_op=train_op) 156 prediction, loss = (models.logistic_regression_zero_init(features, labels)) 163 'class': math_ops.argmax(prediction, 1), 164 'prob': prediction
|
D | estimators_test.py | 71 prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) 73 self.assertEqual(9., prediction) 111 prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) 113 self.assertEqual(9., prediction)
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
D | ar_model.py | 460 prediction = prediction_ops["mean"] 465 math_utils.normal_log_prob(targets, sigma, prediction)) 469 math_ops.squared_difference(prediction, targets)) 697 prediction = prediction_ops["mean"] 701 targets.get_shape().assert_is_compatible_with(prediction.get_shape()) 714 prediction = self._scale_back_data(prediction) 722 predictions={"mean": prediction, "covariance": covariance, 963 prediction = prediction_ops["mean"] 968 log_prob = math_utils.normal_log_prob(targets, anomaly_sigma, prediction) 972 log_prob = math_utils.cauchy_log_prob(targets, anomaly_scale, prediction) [all …]
|
/external/tensorflow/tensorflow/core/kernels/boosted_trees/ |
D | boosted_trees.proto | 159 // prediction path 3) Leaf node IDs. 161 // Return the logits and associated feature splits across prediction paths for 163 // compute DFCs in Python, by subtracting each child prediction from its 164 // parent prediction and associating this change with its respective feature 169 // TODO(crawles): return 2) Node IDs for ensemble prediction path 3) Leaf node
|
/external/tensorflow/tensorflow/contrib/timeseries/examples/ |
D | lstm.py | 142 state_from_time, prediction, exogenous, lstm_state = state 151 (prediction - transformed_values) ** 2, axis=-1) 182 state_from_time, prediction, _, lstm_state = state 183 return (state_from_time, prediction,
|
/external/v8/src/interpreter/ |
D | handler-table-builder.cc | 61 int handler_id, HandlerTable::CatchPrediction prediction) { in SetPrediction() argument 62 entries_[handler_id].catch_prediction_ = prediction; in SetPrediction()
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
D | ops_test.py | 42 prediction, loss = ops.softmax_classifier(features, labels, weights, 44 self.assertEqual(prediction.get_shape()[1], 2)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_InTopK.pbtxt | 30 prediction for the target class is among the top `k` predictions among 33 same prediction value and straddle the top-`k` boundary, all of those
|
D | api_def_InTopKV2.pbtxt | 30 prediction for the target class is among the top `k` predictions among 33 same prediction value and straddle the top-`k` boundary, all of those
|
D | api_def_BoostedTreesTrainingPredict.pbtxt | 8 tree of prediction. 15 node of prediction.
|