Searched refs:prev_output (Results 1 – 5 of 5) sorted by relevance
/external/tensorflow/tensorflow/python/keras/layers/ |
D | recurrent_test.py | 71 prev_output = states[0] 72 output = keras.backend.dot(inputs, self.kernel) + prev_output 165 prev_output = states[0] 167 output = h + keras.backend.dot(prev_output, self.recurrent_kernel) 249 prev_output = states[0] 251 output = h + keras.backend.dot(prev_output, self.recurrent_kernel) 409 [prev_output] = states 412 h_state = keras.backend.dot(prev_output, self.recurrent_kernel) 539 [prev_output] = states 542 h_state = keras.backend.dot(prev_output, self.recurrent_kernel) [all …]
|
D | recurrent.py | 1233 prev_output = states[0] 1236 prev_output, training) 1246 prev_output *= rec_dp_mask 1247 output = h + K.dot(prev_output, self.recurrent_kernel)
|
D | wrappers_test.py | 59 [prev_output] = states 62 h_state = keras.backend.dot(prev_output, self.recurrent_kernel)
|
/external/tensorflow/tensorflow/python/keras/ |
D | backend.py | 3447 prev_output = zeros_like(output) 3449 prev_output = successive_outputs[-1] 3451 output = array_ops.where(tiled_mask_t, output, prev_output) 3548 def _step(time, output_ta_t, prev_output, *states): argument 3569 else nest.flatten(prev_output))
|
D | backend_test.py | 1023 prev_output = states[0] 1024 output = keras.backend.dot(x, w_i) + keras.backend.dot(prev_output, w_o) 1113 prev_output = states[0] 1114 output = keras.backend.dot(x, w_i) + keras.backend.dot(prev_output, w_o)
|