/external/tensorflow/tensorflow/lite/tools/optimize/ |
D | subgraph_quantizer.cc | 42 tensor->quantization = absl::make_unique<QuantizationParametersT>(); in AddQuantizationParams() 43 tensor->quantization->scale.assign(scales.begin(), scales.end()); in AddQuantizationParams() 47 tensor->quantization->zero_point.assign(zero_point.begin(), zero_point.end()); in AddQuantizationParams() 48 tensor->quantization->quantized_dimension = quantized_dimension; in AddQuantizationParams() 149 if (!input_tensor->quantization || in SymmetricPerChannelBiasQuantize() 150 input_tensor->quantization->scale.size() != 1) { in SymmetricPerChannelBiasQuantize() 154 TF_LITE_ENSURE(error_reporter, weight_tensor->quantization); in SymmetricPerChannelBiasQuantize() 155 const std::vector<float>& weight_scales = weight_tensor->quantization->scale; in SymmetricPerChannelBiasQuantize() 166 scales[i] = input_tensor->quantization->scale[0] * weight_scales[i]; in SymmetricPerChannelBiasQuantize() 206 if (!tensor->quantization || tensor->quantization->min.empty() || in AsymmetricQuantizeTensor() [all …]
|
D | subgraph_quantizer_test.cc | 95 ASSERT_TRUE(weights_tensor->quantization); in TEST() 97 ASSERT_TRUE(bias_tensor->quantization); in TEST() 98 ASSERT_TRUE(weights_tensor->quantization); in TEST() 99 const std::vector<float>& bias_scales = bias_tensor->quantization->scale; in TEST() 101 weights_tensor->quantization->scale; in TEST() 104 weights_tensor->quantization->zero_point; in TEST() 109 ASSERT_EQ(input_tensor->quantization->scale.size(), 1); in TEST() 110 ASSERT_EQ(output_tensor->quantization->scale.size(), 1); in TEST() 119 EXPECT_EQ(input_tensor->quantization->scale[0], 1); in TEST() 120 EXPECT_EQ(output_tensor->quantization->scale[0], 1); in TEST() [all …]
|
D | quantization_utils.cc | 184 if (tensor->quantization == nullptr) { in SymmetricQuantizeTensor() 185 tensor->quantization = absl::make_unique<QuantizationParametersT>(); in SymmetricQuantizeTensor() 187 tensor->quantization->scale = std::vector<float>(1, scaling_factor); in SymmetricQuantizeTensor() 188 tensor->quantization->zero_point = std::vector<int64_t>(1, 0); in SymmetricQuantizeTensor()
|
/external/tensorflow/tensorflow/lite/toco/tflite/ |
D | import.cc | 78 auto quantization = input_tensor->quantization(); in ImportTensors() local 79 if (quantization) { in ImportTensors() 82 if (quantization->min() && quantization->max()) { in ImportTensors() 83 CHECK_EQ(1, quantization->min()->Length()); in ImportTensors() 84 CHECK_EQ(1, quantization->max()->Length()); in ImportTensors() 86 minmax.min = quantization->min()->Get(0); in ImportTensors() 87 minmax.max = quantization->max()->Get(0); in ImportTensors() 89 if (quantization->scale() && quantization->zero_point()) { in ImportTensors() 90 CHECK_EQ(1, quantization->scale()->Length()); in ImportTensors() 91 CHECK_EQ(1, quantization->zero_point()->Length()); in ImportTensors() [all …]
|
/external/tensorflow/tensorflow/lite/c/ |
D | c_api_internal.c | 94 void TfLiteQuantizationFree(TfLiteQuantization* quantization) { in TfLiteQuantizationFree() argument 95 if (quantization->type == kTfLiteAffineQuantization) { in TfLiteQuantizationFree() 97 (TfLiteAffineQuantization*)(quantization->params); in TfLiteQuantizationFree() 108 quantization->params = NULL; in TfLiteQuantizationFree() 109 quantization->type = kTfLiteNoQuantization; in TfLiteQuantizationFree() 117 TfLiteQuantizationFree(&t->quantization); in TfLiteTensorFree() 121 TfLiteQuantizationParams quantization, char* buffer, in TfLiteTensorReset() argument 129 tensor->params = quantization; in TfLiteTensorReset() 136 tensor->quantization.type = kTfLiteNoQuantization; in TfLiteTensorReset() 137 tensor->quantization.params = NULL; in TfLiteTensorReset()
|
/external/tensorflow/tensorflow/lite/ |
D | interpreter.cc | 42 TfLiteQuantization quantization; in GetQuantizationFromLegacy() local 43 quantization.type = kTfLiteAffineQuantization; in GetQuantizationFromLegacy() 50 quantization.params = affine_quantization; in GetQuantizationFromLegacy() 52 return quantization; in GetQuantizationFromLegacy() 157 const std::vector<int>& dims, TfLiteQuantization quantization, in SetTensorParametersReadOnly() argument 160 tensor_index, type, name, dims.size(), dims.data(), quantization, buffer, in SetTensorParametersReadOnly() 166 const std::vector<int>& dims, TfLiteQuantization quantization, in SetTensorParametersReadWrite() argument 169 tensor_index, type, name, dims.size(), dims.data(), quantization, in SetTensorParametersReadWrite() 175 const int* dims, TfLiteQuantizationParams quantization, const char* buffer, in SetTensorParametersReadOnly() argument 177 TfLiteQuantization new_quantization = GetQuantizationFromLegacy(quantization); in SetTensorParametersReadOnly() [all …]
|
D | interpreter.h | 165 const std::vector<int>& dims, TfLiteQuantization quantization, 171 const std::vector<int>& dims, TfLiteQuantizationParams quantization, 175 dims.data(), quantization, buffer, bytes, 181 const int* dims, TfLiteQuantizationParams quantization, 191 TfLiteQuantization quantization, 197 const std::vector<int>& dims, TfLiteQuantizationParams quantization, 200 dims.data(), quantization, is_variable); 204 const int* dims, TfLiteQuantizationParams quantization,
|
D | model.cc | 304 TfLiteQuantization* quantization) { in ParseQuantization() argument 305 quantization->type = kTfLiteNoQuantization; in ParseQuantization() 328 quantization->type = kTfLiteAffineQuantization; in ParseQuantization() 348 quantization->params = reinterpret_cast<void*>(affine_quantization); in ParseQuantization() 370 const auto* src_quantization = tensor->quantization(); in ParseTensors() 371 TfLiteQuantization quantization; in ParseTensors() local 372 if (ParseQuantization(src_quantization, &quantization) != kTfLiteOk) { in ParseTensors() 421 i, type, get_name(tensor), dims, quantization, buffer_ptr, in ParseTensors() 429 dims, quantization, in ParseTensors()
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | kernel_util_test.cc | 157 input.quantization.type = kTfLiteAffineQuantization; in TEST_F() 164 input.quantization.params = reinterpret_cast<void*>(input_params); in TEST_F() 177 filter.quantization.type = kTfLiteAffineQuantization; in TEST_F() 189 filter.quantization.params = reinterpret_cast<void*>(filter_params); in TEST_F() 198 bias.quantization.type = kTfLiteAffineQuantization; in TEST_F() 209 bias.quantization.params = reinterpret_cast<void*>(bias_params); in TEST_F() 218 output.quantization.type = kTfLiteAffineQuantization; in TEST_F() 225 output.quantization.params = reinterpret_cast<void*>(output_params); in TEST_F() 263 input.quantization.type = kTfLiteAffineQuantization; in TEST_F() 270 input.quantization.params = reinterpret_cast<void*>(input_params); in TEST_F() [all …]
|
/external/tensorflow/tensorflow/lite/g3doc/performance/ |
D | model_optimization.md | 29 * Reduce representational precision with quantization. 32 We support quantization, and are working to add support for other techniques. 34 ## Model quantization 42 …mentations provide SIMD instruction capabilities, which are especially beneficial for quantization. 44 TensorFlow Lite provides several levels of support for quantization. 46 * [Post-training quantization](post_training_quantization.md) quantizes weights and activations pos… 51 Below are the latency and accuracy results for post-training quantization and 52 quantization-aware training on a few models. All latency numbers are measured on 77 <b>Table 1</b> Benefits of model quantization for select CNN models 81 ## Choice of quantization tool [all …]
|
D | post_training_quantization.md | 1 # Post-training quantization 3 Post-training quantization is a general technique to reduce model size while also 5 quantization quantizes weights from floating point to 8-bits of precision. This technique 37 If the accuracy drop is too high, consider using [quantization aware training](https://github.com/t… 58 With our post-training quantization tooling, we use symmetric quantization for
|
/external/tensorflow/tensorflow/contrib/quantize/ |
D | README.md | 10 convolutional and fully-connected layers prior to quantization by 13 The quantization error is modeled using [fake quantization](../../api_guides/python/array_ops.md#Fa… 14 nodes to simulate the effect of quantization in the forward and backward passes. The 15 forward-pass models quantization, while the backward-pass models quantization as a 16 straight-through estimator. Both the forward- and backward-pass simulate the quantization 23 during training. This allows a model trained with quantization in the loop to be 27 Since it's difficult to add these fake quantization operations to all the 37 # often needed to fine tune a floating point model for quantization 39 # can be used to activate quantization after training to converge 51 since the quantization ops affect the batch normalization step. Because of this, [all …]
|
/external/gemmlowp/doc/ |
D | public.md | 15 rationale for a specific quantization paradigm is given in 16 [quantization.md](quantization.md). That specific quantization paradigm is 97 quantization paradigm explained in [quantization.md](quantization.md) that 102 pipeline (see [output.md](output.md)). This is the part of the quantization 103 paradigm explained in [quantization.md](quantization.md) that needs to be 146 quantization", whence the PC suffix. This has been useful in some settings where 149 the need for per-channel quantization. For that reason, the long-term usefulness 155 section of [low-precision.md](low-precision.md) on the legacy quantization
|
D | quantization.md | 1 # Building a quantization paradigm from first principles 12 quantization paradigm affects the calculations that gemmlowp itself needs to 25 naturally at some specific quantization paradigm, and how that can be 28 We also aim to show how that differs from the older, legacy quantization 30 newer quantization paradigm described in this document was useful as far as some 75 ## The final form of the quantization equation 78 representable — means in either quantization equations, (1) and (2). 111 In other words, `D = -zero_point`. This suggests rewriting the quantization 122 With this quantization equation (3), the condition that 0 be exactly 148 above equation (3), with some already-known quantization parameters `lhs_scale`, [all …]
|
D | output.md | 10 quantization paradigms. See [low-precision.md](low-precision.md) and 11 [quantization.md](quantization.md). 13 Besides implementing a quantization paradigm, the other thing that output 51 quantized matrix multiplication with a sounds quantization paradigm, is here:
|
/external/tensorflow/tensorflow/contrib/quantization/python/ |
D | __init__.py | 22 from tensorflow.contrib.quantization.python.array_ops import * 23 from tensorflow.contrib.quantization.python.math_ops import * 24 from tensorflow.contrib.quantization.python.nn_ops import *
|
/external/tensorflow/tensorflow/lite/testdata/ |
D | add_quantized.json | 18 quantization: { 42 quantization: { 66 quantization: {
|
/external/tensorflow/tensorflow/contrib/quantization/ |
D | __init__.py | 23 from tensorflow.contrib.quantization.python import array_ops as quantized_array_ops 24 from tensorflow.contrib.quantization.python.math_ops import * 25 from tensorflow.contrib.quantization.python.nn_ops import *
|
D | README.md | 1 The contrib/quantization package exposes a few TensorFlow quantization operations.
|
/external/tensorflow/tensorflow/lite/core/ |
D | subgraph.cc | 77 const TfLiteQuantization& quantization) { in GetLegacyQuantization() argument 84 if (quantization.type != kTfLiteAffineQuantization) { in GetLegacyQuantization() 89 reinterpret_cast<TfLiteAffineQuantization*>(quantization.params); in GetLegacyQuantization() 821 const int* dims, TfLiteQuantization quantization, const char* buffer, in SetTensorParametersReadOnly() argument 846 TfLiteQuantizationFree(&tensor.quantization); in SetTensorParametersReadOnly() 849 tensor.params = GetLegacyQuantization(quantization); in SetTensorParametersReadOnly() 850 tensor.quantization = quantization; in SetTensorParametersReadOnly() 856 GetLegacyQuantization(quantization), in SetTensorParametersReadOnly() 861 tensor.quantization = quantization; in SetTensorParametersReadOnly() 872 const int* dims, TfLiteQuantization quantization, bool is_variable) { in SetTensorParametersReadWrite() argument [all …]
|
D | subgraph.h | 90 const std::vector<int>& dims, TfLiteQuantization quantization, 94 dims.data(), quantization, buffer, bytes, 99 const int* dims, TfLiteQuantization quantization, const char* buffer, 108 const std::vector<int>& dims, TfLiteQuantization quantization, 111 dims.data(), quantization, is_variable); 116 TfLiteQuantization quantization,
|
/external/webp/src/enc/ |
D | predictor_enc.c | 151 uint8_t boundary, int quantization) { in NearLosslessComponent() argument 154 const int lower = residual & ~(quantization - 1); in NearLosslessComponent() 155 const int upper = lower + quantization; in NearLosslessComponent() 165 return lower + (quantization >> 1); in NearLosslessComponent() 174 return lower + (quantization >> 1); in NearLosslessComponent() 192 int quantization; in NearLossless() local 199 quantization = max_quantization; in NearLossless() 200 while (quantization >= max_diff) { in NearLossless() 201 quantization >>= 1; in NearLossless() 207 a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); in NearLossless() [all …]
|
/external/libjpeg-turbo/ |
D | wizard.txt | 21 jcparam.c. At very low quality settings, some quantization table entries 22 can get scaled up to values exceeding 255. Although 2-byte quantization 26 quantization values to no more than 255 by giving the -baseline switch. 30 You can substitute a different set of quantization values by using the 33 -qtables file Use the quantization tables given in the named file. 35 The specified file should be a text file containing decimal quantization 44 duplicates the default quantization tables: 73 the quantization values are constrained to the range 1-255. 75 By default, cjpeg will use quantization table 0 for luminance components and 79 -qslots N[,...] Select which quantization table to use for [all …]
|
/external/tensorflow/tensorflow/lite/g3doc/convert/ |
D | quantization.md | 26 ["fake-quantization" nodes](https://github.com/tensorflow/tensorflow/tree/r1.13/tensorflow/contrib/… 45 For most users, we recommend using post-training quantization. We are working on 46 new tools for post-training and during training quantization that we hope will
|
/external/tensorflow/tensorflow/lite/toco/ |
D | toco_flags.proto | 49 // quantization of input arrays, separately from other arrays. 61 // the uint8 values are interpreted as real numbers, and the quantization 67 // the representation (quantization) of real numbers in the output file, 75 // file to choose a different real-numbers representation (quantization) 92 // with quantization of models. Normally, quantization requires the input 100 // allowing for quantization to proceed. 116 // generate plain float code without fake-quantization from a quantized
|