/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_reduce_op_test.py | 104 ragged_reduce_op=ragged_math_ops.reduce_max, 110 ragged_reduce_op=ragged_math_ops.reduce_max, 169 ragged_reduce_op=ragged_math_ops.reduce_max, 195 ragged_reduce_op=ragged_math_ops.reduce_max, 226 ragged_reduce_op=ragged_math_ops.reduce_max,
|
D | ragged_math_ops.py | 482 num_segments = math_ops.maximum(math_ops.reduce_max(row_lengths), 0) 522 def reduce_max(input_tensor, axis=None, keepdims=None, name=None): function 524 return _ragged_reduce_aggregate(math_ops.reduce_max, 583 _set_ragged_reduce_docstring(reduce_max, 'maximum', 'maximized',
|
D | ragged_dispatch.py | 399 math_ops.reduce_max, 458 (math_ops.reduce_max, ragged_math_ops.reduce_max, ['input_tensor']),
|
D | ragged_tensor.py | 977 return math_ops.maximum(math_ops.reduce_max(self.row_lengths()), 0) 983 math_ops.maximum(math_ops.reduce_max(splits[1:] - splits[:-1]), 0) 1179 lengths = math_ops.reduce_max(length_for_nondefault_value, axis=1) 1271 ncols = math_ops.maximum(math_ops.reduce_max(rt_row_lengths), 0)
|
/external/tensorflow/tensorflow/contrib/quantize/python/ |
D | quant_ops.py | 149 batch_max = math_ops.reduce_max( 154 batch_max = math_ops.reduce_max(inputs, name='BatchMax') 274 batch_max = math_ops.reduce_max( 279 batch_max = math_ops.reduce_max(inputs, name='BatchMax')
|
/external/tensorflow/tensorflow/tools/compatibility/testdata/ |
D | test_file_v0_11.py | 84 tf.reduce_max( 87 tf.reduce_max( 89 self.assertAllEqual(tf.reduce_max(a, [0, 1]).eval(), 6.0)
|
/external/tensorflow/tensorflow/python/ops/ |
D | confusion_matrix.py | 170 num_classes = math_ops.maximum(math_ops.reduce_max(predictions), 171 math_ops.reduce_max(labels)) + 1
|
D | linalg_ops.py | 612 math_ops.reduce_max( 630 result = math_ops.reduce_max(result, axis[-1], keepdims=True) 635 result = math_ops.reduce_max(result, max_axis, keepdims=True)
|
/external/tensorflow/tensorflow/contrib/labeled_tensor/ |
D | __init__.py | 127 reduce_max = _ops.reduce_max variable
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | stage_op_test.py | 42 y = math_ops.reduce_max(math_ops.matmul(y, y)) 62 y = math_ops.reduce_max(z * math_ops.matmul(y, y)) 88 y = math_ops.reduce_max(z * math_ops.matmul(y, y))
|
D | reduction_ops_test.py | 106 math_ops.reduce_prod, math_ops.reduce_max, 795 tf_ans = math_ops.reduce_max(x, reduction_axes, keepdims) 809 v = math_ops.reduce_max([0, 0], constant_op.constant(0, dtype=dtype)) 869 su = math_ops.reduce_max(t, [1, 2]) 880 su = math_ops.reduce_max(t, [1]) 891 su = math_ops.reduce_max(t, [2]) 902 su = math_ops.reduce_max(t) 911 y = math_ops.reduce_max(x, [1])
|
/external/tensorflow/tensorflow/contrib/crf/python/ops/ |
D | crf.py | 469 new_state = inputs + math_ops.reduce_max(transition_scores, [1]) # [B, O] 542 best_score = math_ops.reduce_max(squeezed_potentials, axis=1) 589 best_score = math_ops.reduce_max(last_score, axis=1) # [B]
|
/external/tensorflow/tensorflow/contrib/mpi_collectives/ |
D | mpi_ops_test.py | 96 max_difference = tf.reduce_max(tf.abs(summed - multiplied)) 140 max_difference = tf.reduce_max(tf.abs(summed - multiplied))
|
/external/tensorflow/tensorflow/python/keras/ |
D | activations.py | 61 e = math_ops.exp(x - math_ops.reduce_max(x, axis=axis, keepdims=True))
|
/external/tensorflow/tensorflow/contrib/kernel_methods/python/ |
D | losses.py | 133 loss = math_ops.reduce_max(margin, axis=1)
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_SparseReduceMaxSparse.pbtxt | 37 `tf.reduce_max()`. In contrast to SparseReduceMax, this Op returns a
|
D | api_def_SparseReduceMax.pbtxt | 43 `tf.reduce_max()`. In particular, this Op also returns a dense `Tensor`
|
/external/tensorflow/tensorflow/contrib/metrics/python/metrics/ |
D | classification.py | 168 return math_ops.reduce_max(f1_at_thresholds)
|
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | matrix_functions.py | 129 math_ops.reduce_max(math_ops.abs(mat_m - identity)) > epsilon)
|
/external/tensorflow/tensorflow/contrib/bayesflow/python/ops/ |
D | monte_carlo_impl.py | 361 return math_ops.reduce_max(values, axis=[0])
|
/external/tensorflow/tensorflow/contrib/layers/python/ops/ |
D | sparse_ops.py | 168 math_ops.reduce_max(row_index_indicators), shape=(1,),
|
/external/tensorflow/tensorflow/python/layers/ |
D | convolutional_test.py | 313 b_constraint = lambda x: x / math_ops.reduce_max(x) 324 b_constraint = lambda x: x / math_ops.reduce_max(x) 335 b_constraint = lambda x: x / math_ops.reduce_max(x) 514 b_constraint = lambda x: x / math_ops.reduce_max(x) 772 b_constraint = lambda x: x / math_ops.reduce_max(x) 969 b_constraint = lambda x: x / math_ops.reduce_max(x) 1160 b_constraint = lambda x: x / math_ops.reduce_max(x)
|
/external/tensorflow/tensorflow/contrib/losses/python/metric_learning/ |
D | metric_loss_ops.py | 135 masked_maximums = math_ops.reduce_max( 153 axis_maximums = math_ops.reduce_max(data, dim, keepdims=True) 451 row_negative_maximums = math_ops.reduce_max(
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
D | linear_operator.py | 461 cond = (math_ops.reduce_max(singular_values, axis=-1) / 473 math_ops.reduce_max([
|
/external/tensorflow/tensorflow/contrib/gan/python/losses/python/ |
D | losses_impl.py | 831 list_max = math_ops.reduce_max([math_ops.reduce_max(math_ops.abs(x)) for x in
|