/external/tensorflow/tensorflow/contrib/linear_optimizer/python/ |
D | sdca_estimator_test.py | 343 regressor = sdca_estimator.SDCALinearRegressor( 347 regressor.fit(input_fn=input_fn, steps=20) 348 loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] 350 self.assertIn('linear/x/weight', regressor.get_variable_names()) 351 regressor_weights = regressor.get_variable_value('linear/x/weight') 384 regressor = sdca_estimator.SDCALinearRegressor( 391 regressor.fit(input_fn=input_fn, steps=20) 392 loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] 424 regressor = sdca_estimator.SDCALinearRegressor( 433 regressor.fit(input_fn=input_fn, steps=20) [all …]
|
/external/webrtc/webrtc/modules/audio_coding/codecs/ilbc/ |
D | xcorr_coef.c | 28 int16_t *regressor, /* (i) second array */ in WebRtcIlbcfix_XcorrCoef() argument 58 max=WebRtcSpl_MaxAbsValueW16(regressor, subl + searchLen - 1); in WebRtcIlbcfix_XcorrCoef() 59 rp_beg = regressor; in WebRtcIlbcfix_XcorrCoef() 60 rp_end = regressor + subl; in WebRtcIlbcfix_XcorrCoef() 62 max = WebRtcSpl_MaxAbsValueW16(regressor - searchLen, subl + searchLen - 1); in WebRtcIlbcfix_XcorrCoef() 63 rp_beg = regressor - 1; in WebRtcIlbcfix_XcorrCoef() 64 rp_end = regressor + subl - 1; in WebRtcIlbcfix_XcorrCoef() 78 Energy=WebRtcSpl_DotProductWithScale(regressor, regressor, subl, shifts); in WebRtcIlbcfix_XcorrCoef() 82 rp = ®ressor[pos]; in WebRtcIlbcfix_XcorrCoef()
|
D | enhancer_interface.c | 57 int16_t *target, *regressor; in WebRtcIlbcfix_EnhancerInterface() local 119 regressor = target - 10; in WebRtcIlbcfix_EnhancerInterface() 122 max16 = WebRtcSpl_MaxAbsValueW16(®ressor[-50], ENH_BLOCKL_HALF + 50 - 1); in WebRtcIlbcfix_EnhancerInterface() 127 WebRtcSpl_CrossCorrelation(corr32, target, regressor, ENH_BLOCKL_HALF, 50, in WebRtcIlbcfix_EnhancerInterface() 148 ener = WebRtcSpl_DotProductWithScale(regressor - lagmax[i], in WebRtcIlbcfix_EnhancerInterface() 149 regressor - lagmax[i], in WebRtcIlbcfix_EnhancerInterface() 201 regressor=in+tlag-1; in WebRtcIlbcfix_EnhancerInterface() 204 max16 = WebRtcSpl_MaxAbsValueW16(regressor, plc_blockl + 3 - 1); in WebRtcIlbcfix_EnhancerInterface() 211 WebRtcSpl_CrossCorrelation(corr32, target, regressor, plc_blockl, 3, shifts, in WebRtcIlbcfix_EnhancerInterface()
|
D | xcorr_coef.h | 31 int16_t *regressor, /* (i) second array */
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | linear_test.py | 1105 regressor = linear.LinearRegressor( 1109 regressor.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) 1110 scores = regressor.evaluate( 1138 regressor = linear.LinearRegressor( 1142 regressor.fit(input_fn=_input_fn, steps=100) 1144 scores = regressor.evaluate(input_fn=_input_fn, steps=1) 1157 regressor = linear.LinearRegressor( 1161 regressor.fit(input_fn=_input_fn_train, steps=100) 1162 scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) 1190 regressor = linear.LinearRegressor( [all …]
|
D | nonlinear_test.py | 67 regressor = dnn.DNNRegressor( 71 regressor.fit(boston.data, 75 weights = ([regressor.get_variable_value("dnn/hiddenlayer_0/weights")] + 76 [regressor.get_variable_value("dnn/hiddenlayer_1/weights")] + 77 [regressor.get_variable_value("dnn/hiddenlayer_2/weights")] + 78 [regressor.get_variable_value("dnn/logits/weights")]) 84 biases = ([regressor.get_variable_value("dnn/hiddenlayer_0/biases")] + 85 [regressor.get_variable_value("dnn/hiddenlayer_1/biases")] + 86 [regressor.get_variable_value("dnn/hiddenlayer_2/biases")] + 87 [regressor.get_variable_value("dnn/logits/biases")])
|
D | dnn_test.py | 1052 regressor = dnn.DNNRegressor( 1058 regressor.fit(input_fn=input_fn, steps=200) 1059 scores = regressor.evaluate(input_fn=input_fn, steps=1) 1075 regressor = dnn.DNNRegressor( 1080 regressor.fit(input_fn=_input_fn, steps=200) 1081 scores = regressor.evaluate(input_fn=_input_fn, steps=1) 1090 regressor = dnn.DNNRegressor( 1095 regressor.fit(x=train_x, y=train_y, steps=200) 1096 scores = regressor.evaluate(x=train_x, y=train_y, steps=1) 1125 regressor = dnn.DNNRegressor( [all …]
|
D | dnn_linear_combined_test.py | 1213 regressor = dnn_linear_combined.DNNLinearCombinedRegressor( 1219 regressor.fit(input_fn=test_data.iris_input_logistic_fn, steps=10) 1220 scores = regressor.evaluate( 1252 regressor = dnn_linear_combined.DNNLinearCombinedRegressor( 1258 regressor.fit(input_fn=_input_fn_train, steps=100) 1259 scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) 1287 regressor = dnn_linear_combined.DNNLinearCombinedRegressor( 1294 regressor.fit(input_fn=_input_fn_train, steps=100) 1295 scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) 1324 regressor = dnn_linear_combined.DNNLinearCombinedRegressor( [all …]
|
D | debug_test.py | 628 regressor = debug.DebugRegressor( 631 regressor.fit(input_fn=input_fn, steps=200) 632 scores = regressor.evaluate(input_fn=input_fn, steps=1) 645 regressor = debug.DebugRegressor( 648 regressor.fit(input_fn=_input_fn, steps=200) 649 scores = regressor.evaluate(input_fn=_input_fn, steps=1) 657 regressor = debug.DebugRegressor( 659 regressor.fit(x=train_x, y=train_y, steps=200) 660 scores = regressor.evaluate(x=train_x, y=train_y, steps=1) 681 regressor = debug.DebugRegressor( [all …]
|
D | regression_test.py | 39 regressor = learn.LinearRegressor( 42 regressor.fit(x, y, steps=200) 43 self.assertIn("linear//weight", regressor.get_variable_names()) 44 regressor_weights = regressor.get_variable_value("linear//weight")
|
D | logistic_regressor_test.py | 71 regressor = logistic_regressor.LogisticRegressor( 75 regressor.fit(input_fn=_iris_data_input_fn, steps=1) 76 eval_metrics = regressor.evaluate(input_fn=_iris_data_input_fn, steps=1) 92 regressor.fit(input_fn=_iris_data_input_fn, steps=100) 93 eval_metrics = regressor.evaluate(input_fn=_iris_data_input_fn, steps=1)
|
D | multioutput_test.py | 38 regressor = learn.LinearRegressor( 41 regressor.fit(x, y, steps=100) 42 score = mean_squared_error(np.array(list(regressor.predict_scores(x))), y)
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/utils/ |
D | export_test.py | 92 regressor = learn.LinearRegressor(feature_columns=cont_features) 96 regressor.fit(x, y, steps=10, monitors=[export_monitor]) 110 regressor = learn.LinearRegressor(feature_columns=cont_features) 111 regressor.fit(x, y, steps=10, monitors=[export_monitor]) 131 regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) 133 regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) 149 regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) 152 regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) 173 regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) 175 regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) [all …]
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/state_space_models/ |
D | structural_ensemble_test.py | 107 regressor = estimators.StructuralEnsembleRegressor( 119 regressor.train(input_fn=train_input_fn, steps=1) 122 evaluation = regressor.evaluate(input_fn=eval_input_fn, steps=1) 126 regressor.predict(input_fn=predict_input_fn) 133 regressor = estimators.StructuralEnsembleRegressor( 143 regressor.train(input_fn=train_input_fn, steps=1) 146 evaluation = regressor.evaluate(input_fn=eval_input_fn, steps=1) 149 regressor.predict(input_fn=predict_input_fn)
|
/external/tensorflow/tensorflow/contrib/tensor_forest/client/ |
D | random_forest_test.py | 96 regressor = random_forest.TensorForestEstimator(hparams.fill()) 100 regressor.fit(input_fn=input_fn, steps=100) 101 res = regressor.evaluate(input_fn=input_fn, steps=10) 104 predictions = list(regressor.predict(input_fn=predict_input_fn)) 210 regressor = random_forest.CoreTensorForestEstimator( 215 regressor.train(input_fn=input_fn, steps=100) 216 res = regressor.evaluate(input_fn=input_fn, steps=10) 219 predictions = list(regressor.predict(input_fn=predict_input_fn)) 281 regressor = random_forest.CoreTensorForestEstimator(hparams.fill()) 285 regressor.train(input_fn=input_fn, steps=100) [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/estimator_batch/ |
D | estimator_test.py | 237 regressor = estimator.GradientBoostedDecisionTreeRegressor( 246 regressor.fit(input_fn=_train_input_fn, steps=15) 247 regressor.evaluate(input_fn=_eval_input_fn, steps=1) 248 regressor.export(self._export_dir_base)
|
/external/tensorflow/tensorflow/contrib/autograph/examples/notebooks/ |
D | rnn_keras_estimator.ipynb | 429 "regressor = tf.estimator.Estimator(\n", 433 "regressor.train(\n", 436 "eval_results = regressor.evaluate(\n", 1010 "def predict_with_estimator(color_name, regressor):\n", 1011 " predictions = regressor.predict(\n", 1031 " predict_with_estimator(color_name, regressor)\n",
|