/external/libtextclassifier/lang_id/common/math/ |
D | softmax.cc | 27 float ComputeSoftmaxProbability(const std::vector<float> &scores, int label) { in ComputeSoftmaxProbability() argument 28 if ((label < 0) || (label >= scores.size())) { in ComputeSoftmaxProbability() 30 << "[0, " << scores.size() << ")"; in ComputeSoftmaxProbability() 43 const float label_score = scores[label]; in ComputeSoftmaxProbability() 45 for (int i = 0; i < scores.size(); ++i) { in ComputeSoftmaxProbability() 47 const float delta_score = scores[i] - label_score; in ComputeSoftmaxProbability() 73 std::vector<float> ComputeSoftmax(const std::vector<float> &scores, in ComputeSoftmax() argument 76 softmax.reserve(scores.size()); in ComputeSoftmax() 77 if (scores.empty()) { in ComputeSoftmax() 82 exp_scores.reserve(scores.size()); in ComputeSoftmax() [all …]
|
/external/tensorflow/tensorflow/contrib/metrics/python/ops/ |
D | histogram_ops.py | 40 scores, argument 81 name, 'auc_using_histogram', [boolean_labels, scores, score_range]): 82 scores, boolean_labels = tensor_util.remove_squeezable_dimensions( 83 scores, boolean_labels) 85 boolean_labels, scores = _check_labels_and_scores( 86 boolean_labels, scores, check_shape) 87 hist_true, hist_false = _make_auc_histograms(boolean_labels, scores, 97 def _check_labels_and_scores(boolean_labels, scores, check_shape): argument 100 values=[boolean_labels, scores]): 103 scores = ops.convert_to_tensor(scores, name='scores') [all …]
|
/external/libtextclassifier/utils/math/ |
D | softmax.cc | 26 float ComputeSoftmaxProbability(const std::vector<float> &scores, int label) { in ComputeSoftmaxProbability() argument 27 if ((label < 0) || (label >= scores.size())) { in ComputeSoftmaxProbability() 29 << "[0, " << scores.size() << ")"; in ComputeSoftmaxProbability() 42 const float label_score = scores[label]; in ComputeSoftmaxProbability() 44 for (int i = 0; i < scores.size(); ++i) { in ComputeSoftmaxProbability() 46 const float delta_score = scores[i] - label_score; in ComputeSoftmaxProbability() 72 std::vector<float> ComputeSoftmax(const std::vector<float> &scores) { in ComputeSoftmax() argument 73 return ComputeSoftmax(scores.data(), scores.size()); in ComputeSoftmax() 76 std::vector<float> ComputeSoftmax(const float *scores, int scores_size) { in ComputeSoftmax() argument 85 const float score = scores[i]; in ComputeSoftmax() [all …]
|
/external/mesa3d/src/gallium/state_trackers/wgl/ |
D | stw_ext_pixelformat.c | 334 score_pixelformats(struct stw_pixelformat_score *scores, in score_pixelformats() argument 369 scores[index].points = 0; in score_pixelformats() 379 scores[index].points = 0; in score_pixelformats() 381 scores[index].points -= (actual_value - expected_value) in score_pixelformats() 396 struct stw_pixelformat_score *scores; in wglChoosePixelFormatARB() local 407 scores = (struct stw_pixelformat_score *) in wglChoosePixelFormatARB() 409 if (scores == NULL) in wglChoosePixelFormatARB() 412 scores[i].points = 0x7fffffff; in wglChoosePixelFormatARB() 413 scores[i].index = i; in wglChoosePixelFormatARB() 420 if (!score_pixelformats(scores, count, piAttribIList[0], in wglChoosePixelFormatARB() [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | dnn_test.py | 213 scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) 214 self._assertInRange(0.0, 1.0, scores['accuracy']) 305 scores = classifier.evaluate(input_fn=input_fn, steps=1) 306 self._assertInRange(0.0, 1.0, scores['accuracy']) 307 self.assertIn('loss', scores) 328 scores = classifier.evaluate(input_fn=_input_fn, steps=1) 329 self.assertIn('loss', scores) 343 scores = classifier.evaluate(x=train_x, y=train_y, steps=1) 344 self._assertInRange(0.0, 1.0, scores['accuracy']) 397 scores = classifier.evaluate(input_fn=_input_fn, steps=1) [all …]
|
D | debug_test.py | 226 scores = classifier.evaluate(input_fn=input_fn, steps=1) 227 self._assertInRange(0.0, 1.0, scores['accuracy']) 228 self.assertIn('loss', scores) 243 scores = classifier.evaluate(input_fn=_input_fn, steps=1) 244 self.assertIn('loss', scores) 254 scores = classifier.evaluate(x=train_x, y=train_y, steps=1) 255 self._assertInRange(0.0, 1.0, scores['accuracy']) 292 scores = classifier.evaluate(input_fn=_input_fn, steps=1) 293 self._assertInRange(0.0, 1.0, scores['accuracy']) 294 self.assertIn('loss', scores) [all …]
|
D | linear_test.py | 139 scores = classifier.evaluate( 141 self.assertGreater(scores['accuracy'], 0.9) 161 scores = classifier.evaluate(input_fn=_input_fn, steps=1) 162 self.assertGreater(scores['accuracy'], 0.9) 174 scores = classifier.evaluate(x=train_x, y=train_y, steps=1) 175 self.assertGreater(scores['accuracy'], 0.9) 206 scores = classifier.evaluate(input_fn=_input_fn, steps=1) 207 self.assertGreater(scores['accuracy'], 0.9) 208 self.assertIn('loss', scores) 237 scores = classifier.evaluate(input_fn=_input_fn, steps=1) [all …]
|
D | dnn_linear_combined_test.py | 371 scores = classifier.evaluate( 373 _assert_metrics_in_range(('accuracy', 'auc'), scores) 421 scores = classifier.evaluate(input_fn=_input_fn, steps=100) 422 _assert_metrics_in_range(('accuracy', 'auc'), scores) 467 scores = classifier.evaluate(input_fn=_input_fn, steps=100) 468 _assert_metrics_in_range(('accuracy', 'auc'), scores) 515 scores = classifier.evaluate(input_fn=_input_fn, steps=1) 516 _assert_metrics_in_range(('accuracy', 'auc'), scores) 539 scores = classifier.evaluate( 541 _assert_metrics_in_range(('accuracy',), scores) [all …]
|
D | estimator_input_test.py | 181 scores = est.evaluate( 198 self.assertAllClose(scores2['MSE'], scores['MSE']) 202 self.assertAllClose(other_score, scores['MSE']) 209 scores = est.score( 217 self.assertAllClose(scores['MSE'], other_score) 218 self.assertTrue('global_step' in scores) 219 self.assertEqual(100, scores['global_step']) 227 scores = est.evaluate( 235 self.assertAllClose(other_score, scores['MSE']) 236 self.assertTrue('global_step' in scores) [all …]
|
/external/tensorflow/tensorflow/examples/speech_commands/ |
D | label_wav.cc | 77 std::vector<std::pair<int, float>> scores; in GetTopLabels() local 78 scores.reserve(unsorted_scores_flat.size()); in GetTopLabels() 80 scores.push_back(std::pair<int, float>({i, unsorted_scores_flat(i)})); in GetTopLabels() 82 std::sort(scores.begin(), scores.end(), in GetTopLabels() 87 scores.resize(how_many_labels); in GetTopLabels() 90 for (int i = 0; i < scores.size(); ++i) { in GetTopLabels() 91 sorted_indices.flat<int>()(i) = scores[i].first; in GetTopLabels() 92 sorted_scores.flat<float>()(i) = scores[i].second; in GetTopLabels() 164 Tensor scores; in main() local 165 GetTopLabels(outputs, how_many_labels, &indices, &scores); in main() [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | dense_attention.py | 72 def _apply_scores(self, scores, value, value_mask=None): argument 99 scores -= 1.e9 * math_ops.cast(padding_mask, dtype=K.floatx()) 100 attention_distribution = nn.softmax(scores) 114 scores = self._calculate_scores(query=q, key=k) 115 return self._apply_scores(scores=scores, value=v, value_mask=v_mask) 251 scores = math_ops.matmul(query, key, transpose_b=True) 253 scores *= self.scale_var 254 return scores
|
D | dense_attention_test.py | 34 scores = np.array([[[1.1]]], dtype=np.float32) 40 scores=scores, value=v, value_mask=v_mask) 49 scores = np.array([[[1.1]]], dtype=np.float32) 53 scores=scores, value=v) 62 scores = np.array([[[1., 0., 1.]]], dtype=np.float32) 68 scores=scores, value=v, value_mask=v_mask) 84 scores = np.array([[[1., 0., 1.]]], dtype=np.float32) 88 scores=scores, value=v) 107 scores = np.array([[[1.1]], [[2.1]]], dtype=np.float32) 113 scores=scores, value=v, value_mask=v_mask)
|
/external/tensorflow/tensorflow/contrib/metrics/python/kernel_tests/ |
D | histogram_ops_test.py | 63 scores = constant_op.constant([], shape=[0], dtype=dtypes.float32) 65 auc, update_op = histogram_ops.auc_using_histogram(labels, scores, 160 scores = array_ops.placeholder(dtypes.float32, shape=[num_records]) 162 labels, scores, score_range, nbins=nbins) 168 update_op.run(feed_dict={labels: labels_a, scores: scores_a}) 237 def reshape(scores): argument 238 return score_range[0] + scores * (score_range[1] - score_range[0]) 244 scores = np.nan * np.ones(num_records, dtype=np.float32) 245 scores[labels] = true_scores 246 scores[~labels] = false_scores [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | non_max_suppression_op.cc | 43 const Tensor& scores) { in CheckScoreSizes() argument 45 OP_REQUIRES(context, scores.dims() == 1, in CheckScoreSizes() 47 scores.shape().DebugString())); in CheckScoreSizes() 48 OP_REQUIRES(context, scores.dim_size(0) == num_boxes, in CheckScoreSizes() 79 const Tensor& scores) { in CheckCombinedNMSScoreSizes() argument 81 OP_REQUIRES(context, scores.dims() == 3, in CheckCombinedNMSScoreSizes() 83 scores.shape().DebugString())); in CheckCombinedNMSScoreSizes() 84 OP_REQUIRES(context, scores.dim_size(1) == num_boxes, in CheckCombinedNMSScoreSizes() 156 OpKernelContext* context, const Tensor& scores, int num_boxes, in DoNonMaxSuppressionOp() argument 163 std::copy_n(scores.flat<T>().data(), num_boxes, scores_data.begin()); in DoNonMaxSuppressionOp() [all …]
|
D | multinomial_op_gpu.cu.cc | 43 const int32 num_samples, const float* scores, in MultinomialKernel() argument 47 if (ldg(maxima + maxima_idx) == ldg(scores + index)) { in MultinomialKernel() 60 typename TTypes<float>::Flat scores, in operator ()() 95 To32Bit(scores).device(d) = in operator ()() 104 /*ctx=*/ctx, /*out=*/maxima.data(), /*in=*/scores.data(), /*in_rank=*/2, in operator ()() 116 num_samples, scores.data(), maxima.data(), in operator ()()
|
/external/libtextclassifier/utils/sentencepiece/ |
D | encoder_test.cc | 35 float scores[] = {-0.5, -1.0, -10.0, -1.0}; in TEST() local 39 /*num_pieces=*/4, scores); in TEST() 49 scores[1] = -100.0; in TEST() 60 float scores[] = {-0.5, -1.0, -10.0, -1.0}; in TEST() local 64 /*num_pieces=*/4, scores); in TEST() 90 float scores[] = {-0.5, -1.0, -10.0, -1.0}; in TEST() local 94 /*num_pieces=*/4, scores, in TEST()
|
/external/libtextclassifier/lang_id/ |
D | lang-id.cc | 103 std::vector<float> scores; in FindLanguage() local 104 ComputeScores(text, &scores); in FindLanguage() 106 int prediction_id = GetArgMax(scores); in FindLanguage() 108 float probability = ComputeSoftmaxProbability(scores, prediction_id); in FindLanguage() 136 std::vector<float> scores; in FindLanguages() local 137 ComputeScores(text, &scores); in FindLanguages() 142 std::vector<float> softmax = ComputeSoftmax(scores); in FindLanguages() 206 void ComputeScores(StringPiece text, std::vector<float> *scores) const { in ComputeScores() 215 network_->ComputeFinalScores(features, scores); in ComputeScores()
|
/external/tensorflow/tensorflow/lite/experimental/kernels/ |
D | ctc_decoder.h | 58 std::vector<Output>* output, ScoreOutput* scores) = 0; 80 CTCDecoder::ScoreOutput* scores) override { in Decode() argument 84 if (scores->rows() < batch_size_ || scores->cols() == 0) { in Decode() 94 (*scores)(b, 0) = 0; in Decode() 98 (*scores)(b, 0) += -row.maxCoeff(&max_class_ix); in Decode()
|
/external/tensorflow/tensorflow/contrib/pi_examples/label_image/ |
D | label_image.cc | 234 std::vector<std::pair<int, float>> scores; in GetTopLabels() local 236 scores.push_back(std::pair<int, float>({i, unsorted_scores_flat(i)})); in GetTopLabels() 238 std::sort(scores.begin(), scores.end(), in GetTopLabels() 243 scores.resize(how_many_labels); in GetTopLabels() 244 Tensor sorted_indices(tensorflow::DT_INT32, {scores.size()}); in GetTopLabels() 245 Tensor sorted_scores(tensorflow::DT_FLOAT, {scores.size()}); in GetTopLabels() 246 for (int i = 0; i < scores.size(); ++i) { in GetTopLabels() 247 sorted_indices.flat<int>()(i) = scores[i].first; in GetTopLabels() 248 sorted_scores.flat<float>()(i) = scores[i].second; in GetTopLabels() 269 Tensor scores; in PrintTopLabels() local [all …]
|
/external/tensorflow/tensorflow/core/util/ctc/ |
D | ctc_decoder.h | 58 std::vector<Output>* output, ScoreOutput* scores) = 0; 80 CTCDecoder::ScoreOutput* scores) override { in Decode() argument 85 if (scores->rows() < batch_size_ || scores->cols() == 0) { in Decode() 96 (*scores)(b, 0) = 0; in Decode() 100 (*scores)(b, 0) += -row.maxCoeff(&max_class_ix); in Decode()
|
D | ctc_beam_search_test.cc | 164 Eigen::Map<Eigen::MatrixXf> scores(&score[0][0], batch_size, top_paths); in TEST() local 166 EXPECT_TRUE(decoder.Decode(seq_len, inputs, &outputs, &scores).ok()); in TEST() 177 dictionary_decoder.Decode(seq_len, inputs, &dict_outputs, &scores).ok()); in TEST() 214 Eigen::Map<Eigen::MatrixXf> scores(&score[0][0], batch_size, top_paths); in TEST() local 216 EXPECT_TRUE(decoder.Decode(seq_len, inputs, &outputs, &scores).ok()); in TEST() 309 Eigen::Map<Eigen::MatrixXf> scores(&score[0][0], batch_size, top_paths); in TEST() local 311 EXPECT_TRUE(decoder.Decode(seq_len, inputs, &outputs, &scores).ok()); in TEST() 318 EXPECT_TRUE(decoder.Decode(seq_len, inputs, &outputs, &scores).ok()); in TEST() 325 EXPECT_TRUE(decoder.Decode(seq_len, inputs, &outputs, &scores).ok()); in TEST() 333 EXPECT_TRUE(decoder.Decode(seq_len, inputs, &outputs, &scores).ok()); in TEST() [all …]
|
/external/tensorflow/tensorflow/python/saved_model/model_utils/ |
D | export_output.py | 120 def __init__(self, scores=None, classes=None): argument 134 if (scores is not None 135 and not (isinstance(scores, ops.Tensor) 136 and scores.dtype.is_floating)): 138 'got {}'.format(scores)) 144 if scores is None and classes is None: 147 self._scores = scores 151 def scores(self): member in ClassificationOutput 167 examples, self.classes, self.scores)
|
/external/libaom/libaom/third_party/fastfeat/ |
D | fast.c | 10 int* scores; in fast9_detect_nonmax() local 14 scores = fast9_score(im, stride, corners, num_corners, b); in fast9_detect_nonmax() 15 nonmax = nonmax_suppression(corners, scores, num_corners, ret_num_corners); in fast9_detect_nonmax() 18 free(scores); in fast9_detect_nonmax()
|
D | nonmax.c | 8 xy* nonmax_suppression(const xy* corners, const int* scores, int num_corners, int* ret_num_nonmax) in nonmax_suppression() argument 54 int score = scores[i]; in nonmax_suppression() 59 if(corners[i-1].x == pos.x-1 && corners[i-1].y == pos.y && Compare(scores[i-1], score)) in nonmax_suppression() 64 if(corners[i+1].x == pos.x+1 && corners[i+1].y == pos.y && Compare(scores[i+1], score)) in nonmax_suppression() 85 if( (x == pos.x - 1 || x ==pos.x || x == pos.x+1) && Compare(scores[j], score)) in nonmax_suppression() 106 if( (x == pos.x - 1 || x ==pos.x || x == pos.x+1) && Compare(scores[j],score)) in nonmax_suppression()
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | detection_postprocess.cc | 201 TfLiteTensor* scores = &context->tensors[op_data->scores_index]; in Prepare() local 202 scores->type = kTfLiteFloat32; in Prepare() 203 scores->allocation_type = kTfLiteArenaRw; in Prepare() 204 SetTensorSizes(context, scores, in Prepare() 374 const std::vector<float>& scores, std::vector<int>* selected, in NonMaxSuppressionSingleClassHelper() argument 400 scores, non_max_suppression_score_threshold, &keep_scores, &keep_indices); in NonMaxSuppressionSingleClassHelper() 454 const float* scores) { in NonMaxSuppressionMultiClassRegularHelper() argument 497 *(scores + row * num_classes_with_background + col + label_offset); in NonMaxSuppressionMultiClassRegularHelper() 579 const float* scores) { in NonMaxSuppressionMultiClassFastHelper() argument 610 scores + row * num_classes_with_background + label_offset; in NonMaxSuppressionMultiClassFastHelper() [all …]
|