Home
last modified time | relevance | path

Searched refs:split_inputs (Results 1 – 6 of 6) sorted by relevance

/external/mesa3d/src/compiler/nir/
Dnir_lower_io_arrays_to_elements.c351 struct hash_table *split_inputs = in nir_lower_io_arrays_to_elements_no_indirects() local
364 patch_indirects, split_inputs, true); in nir_lower_io_arrays_to_elements_no_indirects()
368 hash_table_foreach(split_inputs, entry) { in nir_lower_io_arrays_to_elements_no_indirects()
383 _mesa_hash_table_destroy(split_inputs, NULL); in nir_lower_io_arrays_to_elements_no_indirects()
390 struct hash_table *split_inputs = in nir_lower_io_arrays_to_elements() local
407 patch_indirects, split_inputs, false); in nir_lower_io_arrays_to_elements()
411 hash_table_foreach(split_inputs, entry) { in nir_lower_io_arrays_to_elements()
426 _mesa_hash_table_destroy(split_inputs, NULL); in nir_lower_io_arrays_to_elements()
Dnir_lower_io_to_scalar.c173 nir_variable *var, struct hash_table *split_inputs, in lower_load_to_scalar_early() argument
184 chan_vars = get_channel_variables(split_inputs, var); in lower_load_to_scalar_early()
285 struct hash_table *split_inputs = in nir_lower_io_to_scalar_early() local
347 lower_load_to_scalar_early(&b, intr, var, split_inputs, in nir_lower_io_to_scalar_early()
366 hash_table_foreach(split_inputs, entry) { in nir_lower_io_to_scalar_early()
381 _mesa_hash_table_destroy(split_inputs, NULL); in nir_lower_io_to_scalar_early()
/external/tensorflow/tensorflow/core/kernels/
Dbatch_kernels.cc907 std::vector<Tensor> split_inputs; in Compute() local
920 TF_RETURN_IF_ERROR(Split<type>(context, data_t, sizes, &split_inputs)); \ in Compute()
961 runs_it->second.context->set_output(0, split_inputs[i]); in Compute()
970 WaitingTensor{deadline_micros, split_inputs[i]}) in Compute()
/external/tensorflow/tensorflow/python/tpu/
D_tpu_estimator_embedding.py276 def split_inputs(ctx, features, labels): function
Dtpu.py1172 split_inputs = [
1177 transposed_inputs = [list(i) for i in zip(*split_inputs)]
Dtpu_estimator.py899 _tpu_estimator_embedding.split_inputs(ctx, features, labels))