/external/tensorflow/tensorflow/python/eager/ |
D | tape.py | 38 def __init__(self, tape): argument 39 self._tape = tape 47 tape = pywrap_tensorflow.TFE_Py_TapeSetNew(persistent, 49 return Tape(tape) 52 def push_tape(tape): argument 54 pywrap_tensorflow.TFE_Py_TapeSetAdd(tape._tape) # pylint: disable=protected-access 57 def watch(tape, tensor): argument 59 pywrap_tensorflow.TFE_Py_TapeWatch(tape._tape, tensor) # pylint: disable=protected-access 62 def watch_variable(tape, variable): argument 71 pywrap_tensorflow.TFE_Py_TapeWatchVariable(tape._tape, var) # pylint: disable=protected-access [all …]
|
D | pywrap_tfe_test.py | 79 with backprop.GradientTape(persistent=True) as tape: 81 tape.watch(a_2_by_2) 85 dz_dy = tape.gradient(z, [a_2_by_2])[0] 93 with backprop.GradientTape(persistent=True) as tape: 96 tape.watch(m) 100 dz_dy = tape.gradient(z, [m])[0] 126 with backprop.GradientTape(persistent=True) as tape: 127 tape.watch(a_2_by_2) 128 tape.watch(b_2_by_2) 133 dz1_dy = tape.gradient(z1, [a_2_by_2])[0] [all …]
|
D | pywrap_tfe.h | 142 void TFE_Py_TapeSetRemove(PyObject* tape); 145 void TFE_Py_TapeSetAdd(PyObject* tape); 151 void TFE_Py_TapeWatch(PyObject* tape, PyObject* tensor); 175 void TFE_Py_TapeWatchVariable(PyObject* tape, PyObject* variable); 182 PyObject* TFE_Py_TapeGradient(PyObject* tape, PyObject* target, 215 PyObject* TFE_Py_TapeWatchedVariables(PyObject* tape);
|
D | pywrap_tfe_src.cc | 1256 GradientTape* tape; member 1259 static void TFE_Py_Tape_Delete(PyObject* tape) { in TFE_Py_Tape_Delete() argument 1260 delete reinterpret_cast<TFE_Py_Tape*>(tape)->tape; in TFE_Py_Tape_Delete() 1261 Py_TYPE(tape)->tp_free(tape); in TFE_Py_Tape_Delete() 1305 for (auto* tape : tape_set_) { in SafeTapeSet() local 1306 Py_INCREF(tape); in SafeTapeSet() 1311 for (auto* tape : tape_set_) { in ~SafeTapeSet() local 1312 Py_DECREF(tape); in ~SafeTapeSet() 1341 TFE_Py_Tape* tape = PyObject_NEW(TFE_Py_Tape, &TFE_Py_Tape_Type); in TFE_Py_TapeSetNew() local 1342 tape->tape = new GradientTape(persistent == Py_True, in TFE_Py_TapeSetNew() [all …]
|
D | backprop.py | 31 from tensorflow.python.eager import tape 197 this_tape = tape.push_new_tape() 205 tape.pop_tape(this_tape) 509 this_tape = tape.push_new_tape(persistent=persistent) 520 tape.watch(this_tape, args[i]) 530 tape.pop_tape(this_tape) 783 self._tape = tape.push_new_tape( 787 tape.push_tape(self._tape) 793 tape.pop_tape(self._tape) 816 tape.watch_variable(self._tape, t) [all …]
|
D | memory_test.py | 116 with backprop.GradientTape() as tape: 119 tape.gradient(result, net.variables) 121 del tape
|
D | imperative_grad.py | 33 tape, argument 68 tape._tape, # pylint: disable=protected-access
|
D | backprop_test.py | 329 with backprop.GradientTape(persistent=True) as tape: 330 tape.watch(a_2_by_2) 331 dy_dy = tape.gradient(a_2_by_2, [a_2_by_2])[0] 338 with backprop.GradientTape(persistent=True) as tape: 339 tape.watch(a_2_by_2) 340 dy_dy = tape.gradient([a_2_by_2, a_2_by_2], [a_2_by_2])[0] 1169 with backprop.GradientTape() as tape: 1170 tape.watch(x) 1174 return self.evaluate(tape.gradient(y, x)) 1185 with backprop.GradientTape(watch_accessed_variables=False) as tape: [all …]
|
D | wrap_function_test.py | 163 with backprop.GradientTape() as tape: 164 tape.watch(x) 166 grads = tape.gradient(out, [x, v1, v2_holder[0]]) 176 with backprop.GradientTape() as tape: 177 tape.watch(x) 179 grads = tape.gradient(out, [x, v1, v2_holder[0]])
|
D | BUILD | 31 "//tensorflow/c/eager:tape", 63 ":tape", 132 name = "tape", 133 srcs = ["tape.py"], 369 "//tensorflow/python/eager:tape", 394 "//tensorflow/python/eager:tape",
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | relu_op_test.py | 126 with backprop.GradientTape() as tape: 127 tape.watch(x) 129 return tape.gradient(y, x) 175 with backprop.GradientTape() as tape: 176 tape.watch(x) 178 return tape.gradient(y, x) 194 with backprop.GradientTape() as tape: 195 tape.watch(x) 197 return tape.gradient(y, x) 348 with backprop.GradientTape() as tape: [all …]
|
D | list_ops_test.py | 126 with backprop.GradientTape() as tape: 131 tape.watch(c0) 132 tape.watch(c1) 141 dt0, dt1 = tape.gradient(t1, [c0, c1]) 299 with backprop.GradientTape() as tape: 305 tape.watch(c0) 311 dt = tape.gradient(s, c0) 401 with backprop.GradientTape(persistent=True) as tape: 405 tape.watch(c) 410 dt = tape.gradient(s, c) [all …]
|
/external/clang/test/SemaCXX/ |
D | constexpr-turing.cpp | 10 bool tape; member 35 constexpr unsigned run(const State *tm, const Tape &tape, unsigned state) { in run() argument 37 run(tm, move(update(tape, tm[state][tape.val].tape), in run() 38 tm[state][tape.val].dir), in run() 39 tm[state][tape.val].next) + 1; in run()
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
D | ops_test.py | 46 with tfe.GradientTape() as tape: 47 tape.watch(x) 51 grad, = tape.gradient(y, [x], output_gradients=[dy]) 69 with tfe.GradientTape() as tape: 70 tape.watch(x) 74 grad, = tape.gradient(y, [x], output_gradients=[dy])
|
D | blocks_test.py | 144 with tf.GradientTape() as tape: 145 tape.watch(x) 155 grads = tape.gradient(y, [x] + vars_, output_gradients=dy) 173 with tf.GradientTape() as tape: 174 tape.watch(x) 184 grads = tape.gradient(y, [x] + vars_, output_gradients=dy) 207 with tf.GradientTape() as tape: 208 tape.watch(x) 214 dx_true = tape.gradient(y, x, output_gradients=dy) 247 with tf.GradientTape() as tape: [all …]
|
D | revnet.py | 155 with tf.GradientTape() as tape: 156 tape.watch(x) 159 grads_combined = tape.gradient(loss, 175 with tf.GradientTape() as tape: 177 init_grads = tape.gradient(
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | eager_test.py | 61 with backprop.GradientTape(persistent=True) as tape: 62 tape.watch(x) 63 tape.watch(y) 65 da_dx = tape.gradient(a, x) 66 da_dy = tape.gradient(a, y) 267 with backprop.GradientTape() as tape: 269 dy_dx = tape.gradient(y, x) 281 with backprop.GradientTape() as tape: 284 dy_dx = tape.gradient(y, embedding_matrix) 440 with backprop.GradientTape() as tape: [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | custom_gradient.py | 24 from tensorflow.python.eager import tape as tape_lib 182 with backprop.GradientTape() as tape: 195 variables = list(set(tape.watched_variables()) - set(args)) 258 with backprop.GradientTape() as tape: 263 variables = [v for v in set(tape.watched_variables()) if v not in all_inputs]
|
D | script_ops.py | 104 with context.eager_mode(), backprop.GradientTape() as tape: 106 tape.watch(tensor) 120 tape_cache[compat.as_bytes(token)] = (tape, args, outputs) 297 tape, eager_inputs, eager_outputs = tape_cache.pop(compat.as_bytes(token)) 298 return tape.gradient(eager_outputs, eager_inputs, output_gradients=dy)
|
D | math_grad_test.py | 418 with backprop.GradientTape() as tape: 419 tape.watch(x) 420 g = tape.gradient(math_ops.pow(x, 2), x) 429 with backprop.GradientTape() as tape: 430 tape.watch(x1) 431 tape.watch(x2) 433 return tape.gradient(y, [x1, x2])
|
/external/tensorflow/tensorflow/python/training/tracking/ |
D | util_test.py | 270 with backprop.GradientTape() as tape: 273 gradients = tape.gradient(loss, variables) 278 with backprop.GradientTape() as tape: 281 gradients = tape.gradient(loss, variables) 404 with backprop.GradientTape() as tape: 407 gradients = tape.gradient(loss, variables) 481 with backprop.GradientTape() as tape: 484 gradients = tape.gradient(loss, variables) 503 with backprop.GradientTape() as tape: 506 gradients = tape.gradient(loss, variables) [all …]
|
D | util_xla_test.py | 72 with backprop.GradientTape() as tape: 75 gradients = tape.gradient(loss, variables)
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | embeddings_test.py | 91 with backprop.GradientTape() as tape: 93 gs = tape.gradient(output, l.weights)
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | exponential_test.py | 178 with backprop.GradientTape() as tape: 179 tape.watch(lam) 182 grad_lam = tape.gradient(samples, lam)
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | strategy_test_lib.py | 456 with backprop.GradientTape() as tape: 457 tape.watch(x) 459 return tape.gradient(y, x) 550 with backprop.GradientTape() as tape: 551 tape.watch(x) 553 return tape.gradient(y, x)
|