/external/tensorflow/tensorflow/core/kernels/ |
D | cudnn_pooling_gpu.cc | 40 const Tensor& tensor_in, Tensor* output) { in Compute() argument 41 const auto in_shape = tensor_in.shape(); in Compute() 44 const int64 in_batch = GetTensorDim(tensor_in, data_format, 'N'); in Compute() 45 const int64 in_features = GetTensorDim(tensor_in, data_format, 'C'); in Compute() 51 ShapeFromFormat(FORMAT_NCHW, tensor_in.shape(), in Compute() 55 tensor_in.tensor<T, 5>(), in Compute() 58 transformed_input = tensor_in; in Compute() 87 GetTensorDim(tensor_in, data_format, '2' - i)); in Compute() 124 const Tensor* tensor_in, const Tensor* tensor_out, Tensor* input_backprop) { in Compute() argument 126 (tensor_in && tensor_out)) in Compute() [all …]
|
D | pooling_ops_3d.cc | 102 static void launch(OpKernelContext* context, const Tensor& tensor_in, in launch() 109 Eigen::CuboidAvgPooling(tensor_in.tensor<T, 5>(), window[0], window[1], in launch() 117 static void launch(OpKernelContext* context, const Tensor& tensor_in, in launch() 124 Eigen::CuboidMaxPooling(tensor_in.tensor<T, 5>(), window[0], window[1], in launch() 167 const Tensor& tensor_in = context->input(0); in Compute() local 169 OP_REQUIRES(context, tensor_in.dims() == 5, in Compute() 171 const int64 depth = GetTensorDim(tensor_in, data_format_, 'C'); in Compute() 172 const int64 in_batch = GetTensorDim(tensor_in, data_format_, 'N'); in Compute() 176 {GetTensorDim(tensor_in, data_format_, '2'), in Compute() 177 GetTensorDim(tensor_in, data_format_, '1'), in Compute() [all …]
|
D | pooling_ops_common.h | 110 const Tensor& tensor_in = context->input(0); in Compute() local 112 padding_, FORMAT_NHWC, tensor_in.shape()}; in Compute() 133 DepthwiseMaxPool(context, output, tensor_in, params); in Compute() 135 SpatialMaxPool(context, output, tensor_in, params, padding_); in Compute() 147 const Tensor& tensor_in, const PoolParameters& params) { in DepthwiseMaxPool() argument 149 in_by_pool(tensor_in.flat<T>().data(), params.depth_window, in DepthwiseMaxPool() 150 tensor_in.NumElements() / params.depth_window); in DepthwiseMaxPool() 157 const Tensor& tensor_in, const PoolParameters& params, in SpatialMaxPool() argument 168 tensor_in.tensor<T, 4>(), params.window_rows, params.window_cols, in SpatialMaxPool() 176 ConstEigenMatrixMap in_mat(tensor_in.flat<T>().data(), params.depth, in SpatialMaxPool() [all …]
|
D | maxpooling_op.cc | 60 Tensor* input_backprop, const Tensor& tensor_in, const Tensor& out_backprop, in SpatialMaxPoolWithArgMaxHelper() argument 78 tensor_in.flat<T>().data(), params.depth, in SpatialMaxPoolWithArgMaxHelper() 247 const Tensor& tensor_in = context->input(0); in Compute() local 252 OP_REQUIRES(context, tensor_in.dims() == 4, in Compute() 260 const TensorShape& output_shape = tensor_in.shape(); in Compute() 299 padding_, FORMAT_NHWC, tensor_in.shape()}; in Compute() 309 context, &tensor_out_dup, &tensor_out_arg_max, output, tensor_in, in Compute() 325 const std::vector<int32>& stride, Padding padding, const Tensor* tensor_in, in MaxPoolingBackwardCustomKernel() argument 338 tensor_in->flat<T>().data(), params.tensor_in_batch, in MaxPoolingBackwardCustomKernel() 379 const Tensor& tensor_in = context->input(0); in Compute() local [all …]
|
D | pooling_ops_common.cc | 158 TensorFormat data_format, const Tensor& tensor_in, in Compute() argument 164 if (tensor_in.shape().num_elements() == 0) { in Compute() 169 padding, data_format, tensor_in.shape()}; in Compute() 183 ShapeFromFormat(FORMAT_NCHW, tensor_in.shape(), in Compute() 187 tensor_in.tensor<T, 4>(), in Compute() 190 transformed_input = tensor_in; in Compute() 204 auto& transformed_input = tensor_in; in Compute() 288 Padding padding, TensorFormat data_format, const Tensor* tensor_in, in Compute() argument 292 (tensor_in && tensor_out)) in Compute() 313 if (data_format == FORMAT_NHWC || !tensor_in) { in Compute() [all …]
|
D | pooling_ops_3d_sycl.h | 179 static void launch(OpKernelContext* context, const Tensor& tensor_in, 189 const int batch = GetTensorDim(tensor_in, data_format, 'N'); 190 const int in_planes = GetTensorDim(tensor_in, data_format, '0'); 191 const int in_rows = GetTensorDim(tensor_in, data_format, '1'); 192 const int in_cols = GetTensorDim(tensor_in, data_format, '2'); 193 const int depth = GetTensorDim(tensor_in, data_format, 'C'); 198 device.get_sycl_buffer(tensor_in.template flat<T>().data()); 347 static void launch(OpKernelContext* context, const Tensor& tensor_in, 355 const int batch = GetTensorDim(tensor_in, data_format, 'N'); 356 const int in_planes = GetTensorDim(tensor_in, data_format, '0'); [all …]
|
D | quantized_pooling_ops.cc | 56 const Tensor& tensor_in = context->input(0); in Compute() local 58 padding_, FORMAT_NHWC, tensor_in.shape()}; in Compute() 70 OP_REQUIRES(context, tensor_in.dims() == 4, in Compute() 83 Tensor int32_input(DT_INT32, tensor_in.shape()); in Compute() 84 int32_input.flat<int32>() = tensor_in.flat<T>().template cast<int32>(); in Compute()
|
D | fractional_max_pool_op.cc | 78 const Tensor& tensor_in = context->input(0); in Compute() local 79 OP_REQUIRES(context, tensor_in.dims() == tensor_in_and_out_dims, in Compute() 85 input_size[i] = tensor_in.dim_size(i); in Compute() 125 ConstEigenMatrixMap in_mat(tensor_in.flat<T>().data(), input_size[3], in Compute() 230 const Tensor& tensor_in = context->input(0); in Compute() local 241 input_size[i] = tensor_in.dim_size(i); in Compute() 260 tensor_in.flat<T>().data(), input_size[3], in Compute() 339 {0}, 0, tensor_in.shape(), &output)); in Compute()
|
D | avgpooling_op.cc | 77 const Tensor& tensor_in = context->input(0); in Compute() local 79 padding_, data_format_, tensor_in.shape()}; in Compute() 88 OP_REQUIRES(context, tensor_in.dims() == 4, in Compute() 95 SpatialAvgPool<Device, T>(context, output, tensor_in, params, padding_); in Compute() 142 const Tensor& tensor_in = context->input(0); in Compute() local 144 padding_, data_format_, tensor_in.shape()}; in Compute() 153 OP_REQUIRES(context, tensor_in.dims() == 4, in Compute() 160 stride_, padding_, data_format_, tensor_in, in Compute() 170 tensor_in.tensor<T, 4>(), params.window_rows, params.window_cols, in Compute()
|
D | cudnn_pooling_gpu.h | 45 TensorFormat data_format, const Tensor& tensor_in, 62 const Tensor* tensor_in, const Tensor* tensor_out,
|
D | pooling_ops_common_gpu.h | 46 TensorFormat data_format, const Tensor& tensor_in, 61 TensorFormat data_format, const Tensor* tensor_in,
|
D | mkl_maxpooling_op.cc | 79 const Tensor& tensor_in = MklGetInput(context, 0); in Compute() local 87 tensor_in.shape()); in Compute() 135 const_cast<void*>(static_cast<const void*>(tensor_in.flat<T>().data())); in Compute() 237 const Tensor& tensor_in = MklGetInput(context, 0); in Compute() local 247 mkl_context.params.in_dim = tensor_in.dims(); in Compute() 254 tensor_in.shape()); in Compute() 391 const Tensor& tensor_in = MklGetInput(context, 0); in MklPrepareInputs() local 405 tensor_in.flat<T>().data())), in MklPrepareInputs() 414 static_cast<const void*>(tensor_in.flat<T>().data())), in MklPrepareInputs() 420 static_cast<const void*>(tensor_in.flat<T>().data())); in MklPrepareInputs()
|
D | fractional_avg_pool_op.cc | 75 const Tensor& tensor_in = context->input(0); in Compute() local 76 OP_REQUIRES(context, tensor_in.dims() == tensor_in_and_out_dims, in Compute() 82 input_size[i] = tensor_in.dim_size(i); in Compute() 119 ConstEigenMatrixMap in_mat(tensor_in.flat<T>().data(), input_size[3], in Compute()
|
D | mkl_avgpooling_op.cc | 70 const Tensor& tensor_in = MklGetInput(context, 0); in Compute() local 75 mkl_context.params.in_dim = tensor_in.dims(); in Compute() 82 tensor_in.shape()); in Compute() 106 static_cast<void*>(const_cast<T*>(tensor_in.flat<T>().data())), in Compute() 113 static_cast<void*>(const_cast<T*>(tensor_in.flat<T>().data())), in Compute() 119 static_cast<void*>(const_cast<T*>(tensor_in.flat<T>().data())); in Compute()
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ops/ |
D | losses_ops.py | 37 def mean_squared_error_regressor(tensor_in, labels, weights, biases, name=None): argument 40 [tensor_in, labels]): 41 predictions = nn.xw_plus_b(tensor_in, weights, biases) 49 def softmax_classifier(tensor_in, argument 76 with ops.name_scope(name, 'softmax_classifier', [tensor_in, labels]): 77 logits = nn.xw_plus_b(tensor_in, weights, biases)
|
D | embeddings_ops.py | 73 def categorical_variable(tensor_in, n_classes, embedding_size, name): argument 92 return embedding_lookup(embeddings, tensor_in)
|
/external/tensorflow/tensorflow/contrib/quantize/python/ |
D | quantize_test.py | 222 [tensor_in.name for tensor_in in conv_op.inputs])
|