/external/tensorflow/tensorflow/go/op/ |
D | wrappers.go | 23 import tf "github.com/tensorflow/tensorflow/tensorflow/go" packageName 29 func makeOutputList(op *tf.Operation, start int, output string) ([]tf.Output, int, error) { 34 list := make([]tf.Output, size) 80 …tf.Output, inputs tf.Output, min tf.Output, max tf.Output, optional ...FakeQuantWithMinMaxVarsPerC… 88 opspec := tf.OpSpec{ 90 Input: []tf.Input{ 131 …nel(scope *Scope, inputs tf.Output, min tf.Output, max tf.Output, optional ...FakeQuantWithMinMaxV… 139 opspec := tf.OpSpec{ 141 Input: []tf.Input{ 186 …tf.Output, inputs tf.Output, min tf.Output, max tf.Output, optional ...FakeQuantWithMinMaxVarsGrad… [all …]
|
D | gradients_test.go | 23 tf "github.com/tensorflow/tensorflow/tensorflow/go" packageName 29 x1 = Placeholder(s.SubScope("x1"), tf.Float) 30 x2 = Placeholder(s.SubScope("x2"), tf.Float) 33 y2 = AddN(s.SubScope("y2"), []tf.Output{y0, x2}) 36 grads0 := Gradients(s, []tf.Output{y1}, []tf.Output{x1}) 43 if grads0[0].DataType() != tf.Float { 44 t.Fatalf("Got DataType %v, wanted %v", grads0[0].DataType(), tf.Float) 48 grads1 := Gradients(sub, []tf.Output{y2}, []tf.Output{x1, x2}) 55 if grads1[0].DataType() != tf.Float { 56 t.Fatalf("Got DataType %v, wanted %v", grads1[0].DataType(), tf.Float) [all …]
|
/external/curl/packages/vms/ |
D | config_h.com | 171 $ write tf "" 172 $ write tf - 174 $ write tf - 176 $ write tf - 180 $ write tf - 183 $ write tf - 361 $ write tf "#endif" 369 $ write tf "#ifndef ''key2'" 370 $ write tf "#define ''key2' 1" 371 $ write tf "#endif" [all …]
|
/external/blktrace/iowatcher/ |
D | main.c | 156 static void alloc_mpstat_gld(struct trace_file *tf) in alloc_mpstat_gld() argument 160 if (tf->trace->mpstat_num_cpus == 0) in alloc_mpstat_gld() 163 ptr = calloc((tf->trace->mpstat_num_cpus + 1) * MPSTAT_GRAPHS, in alloc_mpstat_gld() 169 tf->mpstat_gld = ptr; in alloc_mpstat_gld() 243 struct trace_file *tf; in add_trace_file() local 245 tf = calloc(1, sizeof(*tf)); in add_trace_file() 246 if (!tf) { in add_trace_file() 250 tf->label = ""; in add_trace_file() 251 tf->filename = strdup(filename); in add_trace_file() 252 list_add_tail(&tf->list, &all_traces); in add_trace_file() [all …]
|
/external/tensorflow/tensorflow/examples/speech_commands/ |
D | models.py | 24 import tensorflow as tf namespace 157 saver = tf.train.Saver(tf.global_variables()) 187 dropout_prob = tf.placeholder(tf.float32, name='dropout_prob') 190 weights = tf.get_variable( 192 initializer=tf.truncated_normal_initializer(stddev=0.001), 194 bias = tf.get_variable( 195 name='bias', initializer=tf.zeros_initializer, shape=[label_count]) 196 logits = tf.matmul(fingerprint_input, weights) + bias 252 dropout_prob = tf.placeholder(tf.float32, name='dropout_prob') 255 fingerprint_4d = tf.reshape(fingerprint_input, [all …]
|
/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
D | not_supported.txt | 9 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 10 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 11 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf.i… 12 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf.i… 13 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 14 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 15 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf.i… 16 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf.i… 17 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… 18 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… [all …]
|
D | test_manifest.txt | 1 add/add_activation=True,dtype=tf.float32,input_shape_1=[1,3,4,3],input_shape_2=[1,3,4,3] 2 DISABLED_add/add_activation=True,dtype=tf.int32,input_shape_1=[1,3,4,3],input_shape_2=[1,3,4,3] 3 add/add_activation=False,dtype=tf.float32,input_shape_1=[5],input_shape_2=[5] 4 add/add_activation=True,dtype=tf.float32,input_shape_1=[5],input_shape_2=[5] 5 add/add_activation=True,dtype=tf.float32,input_shape_1=[1,3,4,3],input_shape_2=[3] 6 add/add_activation=False,dtype=tf.float32,input_shape_1=[1,3,4,3],input_shape_2=[3] 7 DISABLED_add/add_activation=True,dtype=tf.int32,input_shape_1=[1,3,4,3],input_shape_2=[3] 8 DISABLED_add/add_activation=False,dtype=tf.int32,input_shape_1=[1,3,4,3],input_shape_2=[3] 9 DISABLED_add/add_activation=True,dtype=tf.int64,input_shape_1=[1,3,4,3],input_shape_2=[3] 10 DISABLED_add/add_activation=False,dtype=tf.int64,input_shape_1=[1,3,4,3],input_shape_2=[3] [all …]
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | mnist_with_summaries.py | 31 import tensorflow as tf namespace 43 sess = tf.InteractiveSession() 47 with tf.name_scope('input'): 48 x = tf.placeholder(tf.float32, [None, 784], name='x-input') 49 y_ = tf.placeholder(tf.int64, [None], name='y-input') 51 with tf.name_scope('input_reshape'): 52 image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) 53 tf.summary.image('input', image_shaped_input, 10) 58 initial = tf.truncated_normal(shape, stddev=0.1) 59 return tf.Variable(initial) [all …]
|
D | mnist.py | 35 import tensorflow as tf namespace 57 with tf.name_scope('hidden1'): 58 weights = tf.Variable( 59 tf.truncated_normal([IMAGE_PIXELS, hidden1_units], 62 biases = tf.Variable(tf.zeros([hidden1_units]), 64 hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases) 66 with tf.name_scope('hidden2'): 67 weights = tf.Variable( 68 tf.truncated_normal([hidden1_units, hidden2_units], 71 biases = tf.Variable(tf.zeros([hidden2_units]), [all …]
|
/external/tensorflow/tensorflow/tools/compatibility/testdata/ |
D | test_file_v0_11.py | 23 import tensorflow as tf namespace 47 tf.reduce_any( 50 tf.reduce_all( 53 tf.reduce_all( 56 tf.reduce_sum( 59 tf.reduce_sum( 61 self.assertAllEqual(tf.reduce_sum(a, [0, 1]).eval(), 21.0) 63 tf.reduce_prod( 66 tf.reduce_prod( 68 self.assertAllEqual(tf.reduce_prod(a, [0, 1]).eval(), 720.0) [all …]
|
/external/tensorflow/tensorflow/lite/testing/ |
D | generate_examples.py | 52 import tensorflow as tf namespace 235 tf.float32: (np.float32, "FLOAT"), 236 tf.float16: (np.float16, "FLOAT"), 237 tf.int32: (np.int32, "INT32"), 238 tf.uint8: (np.uint8, "QUANTIZED_UINT8"), 239 tf.int16: (np.int16, "QUANTIZED_INT16"), 240 tf.int64: (np.int64, "INT64"), 241 tf.bool: (np.bool, "BOOL"), 242 tf.string: (np.string_, "STRING"), 252 if dtype in (tf.float32, tf.float16): [all …]
|
/external/tensorflow/tensorflow/examples/saved_model/integration_tests/ |
D | export_text_rnn_model.py | 24 import tensorflow.compat.v2 as tf namespace 31 class TextRnnModel(tf.train.Checkpoint): 41 self._lstm_cell = tf.keras.layers.LSTMCell(units=state_size) 42 self._rnn_layer = tf.keras.layers.RNN( 44 self._embeddings = tf.Variable(tf.random.uniform(shape=[buckets, emb_dim])) 45 self._logit_layer = tf.keras.layers.Dense(buckets) 51 normalized_sentences = tf.strings.regex_replace( 53 sparse_tokens = tf.strings.split(normalized_sentences, " ") 56 sparse_tokens, _ = tf.sparse.fill_empty_rows(sparse_tokens, tf.constant("")) 58 sparse_tokens = tf.sparse.reset_shape(sparse_tokens) [all …]
|
/external/tensorflow/tensorflow/contrib/model_pruning/examples/cifar10/ |
D | cifar10_pruning.py | 43 import tensorflow as tf namespace 84 tf.summary.histogram(tensor_name + '/activations', x) 85 tf.summary.scalar(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) 99 with tf.device('/cpu:0'): 100 dtype = tf.float32 101 var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype) 121 dtype = tf.float32 123 tf.truncated_normal_initializer( 126 weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') 127 tf.add_to_collection('losses', weight_decay) [all …]
|
/external/tensorflow/tensorflow/contrib/autograph/examples/benchmarks/ |
D | cartpole_benchmark.py | 33 import tensorflow as tf namespace 48 ag.set_element_type(rewards, tf.float32) 52 ag.set_element_type(reverse_discounted, tf.float32) 67 class GraphPolicyNetwork(tf.keras.Model): 76 self._hidden_layer = tf.keras.layers.Dense( 77 hidden_size, activation=tf.nn.elu) 78 self._output_layer = tf.keras.layers.Dense(1) 97 left_prob = tf.nn.sigmoid(logits) 98 action_probs = tf.concat([left_prob, 1.0 - left_prob], 1) 100 actions = tf.multinomial(tf.log(action_probs), 1) [all …]
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
D | imagenet_input.py | 24 import tensorflow as tf namespace 38 image_bytes_list = tf.placeholder( 40 dtype=tf.string, 42 images = tf.map_fn( 43 _preprocess_image, image_bytes_list, back_prop=False, dtype=tf.float32) 44 return tf.estimator.export.ServingInputReceiver( 97 tf.TensorShape([None, None, None, batch_size]))) 99 tf.TensorShape([batch_size]))) 102 tf.TensorShape([batch_size, None, None, None]))) 104 tf.TensorShape([batch_size]))) [all …]
|
D | resnet_preprocessing.py | 20 import tensorflow as tf namespace 57 with tf.name_scope(scope, 'distorted_bounding_box_crop', [image_bytes, bbox]): 58 shape = tf.image.extract_jpeg_shape(image_bytes) 59 sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( 70 offset_y, offset_x, _ = tf.unstack(bbox_begin) 71 target_height, target_width, _ = tf.unstack(bbox_size) 72 crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) 73 image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) 80 match = tf.equal(a, b) 81 match = tf.cast(match, tf.int32) [all …]
|
D | blocks_test.py | 21 import tensorflow as tf namespace 29 return tf.reduce_sum(u * v) 31 g1_norm = tf.sqrt(_dot(g1, g1)) 32 g2_norm = tf.sqrt(_dot(g2, g2)) 40 cosine = tf.minimum(tf.maximum(cosine, eps - 1.), 1. - eps) 41 degree = tf.acos(cosine) * 180. / 3.141592653589793 56 with tf.device("/cpu:0"): # NHWC format 59 x = tf.random_normal(shape=data_shape) 94 if not tf.test.is_gpu_available(): 97 with tf.device("/gpu:0"): # Default NCHW format [all …]
|
/external/tensorflow/tensorflow/python/debug/examples/ |
D | debug_mnist.py | 30 import tensorflow as tf namespace 57 sess = tf.InteractiveSession() 62 with tf.name_scope("input"): 63 x = tf.placeholder( 64 tf.float32, [None, IMAGE_SIZE * IMAGE_SIZE], name="x-input") 65 y_ = tf.placeholder(tf.float32, [None, NUM_LABELS], name="y-input") 69 initial = tf.truncated_normal(shape, stddev=0.1, seed=RAND_SEED) 70 return tf.Variable(initial) 74 initial = tf.constant(0.1, shape=shape) 75 return tf.Variable(initial) [all …]
|
/external/tensorflow/tensorflow/contrib/session_bundle/example/ |
D | export_half_plus_two.py | 35 import tensorflow as tf namespace 43 with tf.Session() as sess: 46 a = tf.Variable(0.5, name="a") 47 b = tf.Variable(2.0, name="b") 50 serialized_tf_example = tf.placeholder(tf.string, name="tf_example") 54 feature_configs = {"x": tf.FixedLenFeature([1], dtype=tf.float32),} 55 tf_example = tf.parse_example(serialized_tf_example, feature_configs) 57 x = tf.identity(tf_example["x"], name="x") 60 y = tf.add(tf.multiply(a, x), b, name="y") 63 save = tf.train.Saver( [all …]
|
/external/tensorflow/tensorflow/examples/tutorials/layers/ |
D | cnn_mnist.py | 21 import tensorflow as tf namespace 23 tf.logging.set_verbosity(tf.logging.INFO) 31 input_layer = tf.reshape(features["x"], [-1, 28, 28, 1]) 38 conv1 = tf.layers.conv2d( 43 activation=tf.nn.relu) 49 pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) 56 conv2 = tf.layers.conv2d( 61 activation=tf.nn.relu) 67 pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) 72 pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64]) [all …]
|
/external/tensorflow/tensorflow/contrib/mpi_collectives/ |
D | mpi_ops_test.py | 25 import tensorflow as tf namespace 65 class MPITests(tf.test.TestCase): 89 dtypes = [tf.int32, tf.float32] 92 tf.set_random_seed(1234) 93 tensor = tf.random_uniform([17] * dim, -100, 100, dtype=dtype) 96 max_difference = tf.reduce_max(tf.abs(summed - multiplied)) 120 if not tf.test.is_gpu_available(cuda_only=True): 123 no_gpus = tf.GPUOptions(visible_device_list="") 124 cpu_config = tf.ConfigProto(gpu_options=no_gpus) 128 one_gpu = tf.GPUOptions(visible_device_list=str(local_rank)) [all …]
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/rnn_ptb/ |
D | rnn_ptb_graph_test.py | 25 import tensorflow as tf namespace 30 class PTBTest(tf.test.TestCase): 35 with tf.Graph().as_default(), tf.device(tf.test.gpu_device_name()): 36 inputs_ph = tf.placeholder(tf.int64, [sequence_length, batch_size], 38 labels_ph = tf.placeholder(tf.int64, [sequence_length, batch_size], 44 model = rnn_ptb.test_model(tf.test.is_gpu_available()) 45 optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) 50 with tf.Session() as sess: 51 sess.run(tf.global_variables_initializer()) 60 class PTBBenchmark(tf.test.Benchmark): [all …]
|
/external/tensorflow/tensorflow/examples/get_started/regression/ |
D | custom_regression.py | 21 import tensorflow as tf namespace 33 top = tf.feature_column.input_layer(features, params["feature_columns"]) 38 top = tf.layers.dense(inputs=top, units=units, activation=tf.nn.relu) 41 output_layer = tf.layers.dense(inputs=top, units=1) 44 predictions = tf.squeeze(output_layer, 1) 46 if mode == tf.estimator.ModeKeys.PREDICT: 48 return tf.estimator.EstimatorSpec( 52 average_loss = tf.losses.mean_squared_error(labels, predictions) 56 batch_size = tf.shape(labels)[0] 57 total_loss = tf.to_float(batch_size) * average_loss [all …]
|
/external/tensorflow/tensorflow/contrib/distribute/python/examples/ |
D | mnist_tf1_tpu.py | 31 import tensorflow as tf namespace 46 max_pool = tf.keras.layers.MaxPooling2D((2, 2), (2, 2), padding="same") 49 return tf.keras.Sequential([ 50 tf.keras.layers.Reshape( 53 tf.keras.layers.Conv2D(2, 5, padding="same", activation=tf.nn.relu), 55 tf.keras.layers.Conv2D(4, 5, padding="same", activation=tf.nn.relu), 57 tf.keras.layers.Flatten(), 58 tf.keras.layers.Dense(32, activation=tf.nn.relu), 59 tf.keras.layers.Dropout(0.4), 60 tf.keras.layers.Dense(10)]) [all …]
|
/external/tensorflow/tensorflow/tools/docs/ |
D | doc_generator_visitor_test.py | 80 tf = types.ModuleType('tf') 81 tf.Parent = Parent 82 tf.submodule = types.ModuleType('submodule') 83 tf.submodule.Parent = Parent 86 [('tf', tf)], 112 id(tf): 'tf', 113 id(tf.submodule): 'tf.submodule', 121 tf = types.ModuleType('tf') 122 tf.contrib = types.ModuleType('contrib') 123 tf.submodule = types.ModuleType('submodule') [all …]
|