/external/tensorflow/tensorflow/python/keras/layers/ |
D | lstm_test.py | 38 timesteps = 3 45 input_shape=(num_samples, timesteps, embedding_dim)) 49 timesteps = 3 55 input_shape=(timesteps, embedding_dim)) 60 self.assertEqual(outputs.get_shape().as_list(), [None, timesteps, units]) 64 timesteps = 3 73 x = np.random.random((num_samples, timesteps, embedding_dim)) 79 timesteps = 3 87 input_shape=(num_samples, timesteps, embedding_dim)) 92 timesteps = 3 [all …]
|
D | gru_test.py | 37 timesteps = 3 44 input_shape=(num_samples, timesteps, embedding_dim)) 48 timesteps = 3 56 x = np.random.random((num_samples, timesteps, embedding_dim)) 62 timesteps = 3 70 input_shape=(num_samples, timesteps, embedding_dim)) 75 timesteps = 3 82 input_shape=(num_samples, timesteps, embedding_dim)) 86 timesteps = 3 93 input_shape=(timesteps, embedding_dim), [all …]
|
D | cudnn_recurrent_test.py | 46 timesteps = 6 53 input_shape=(num_samples, timesteps, input_size)) 62 timesteps = 6 69 input_shape=(num_samples, timesteps, input_size)) 78 timesteps = 6 83 inputs = keras.Input(batch_shape=(num_samples, timesteps, input_size)) 91 inputs = np.random.random((num_samples, timesteps, input_size)) 103 timesteps = 6 117 np.ones((num_samples, timesteps, input_size)), 118 np.ones((num_samples, timesteps, units))) [all …]
|
D | simplernn_test.py | 36 timesteps = 3 43 input_shape=(num_samples, timesteps, embedding_dim)) 47 timesteps = 3 54 x = np.random.random((num_samples, timesteps, embedding_dim)) 60 timesteps = 3 68 input_shape=(num_samples, timesteps, embedding_dim)) 72 timesteps = 3 80 input_shape=(num_samples, timesteps, embedding_dim)) 143 timesteps = 3 153 input_length=timesteps, [all …]
|
D | lstm_v2_test.py | 82 timesteps = 3 88 embedding_dim, input_shape=(timesteps, embedding_dim)) 93 self.assertEqual(outputs.get_shape().as_list(), [None, timesteps, units]) 97 timesteps = 3 104 x = np.random.random((num_samples, timesteps, embedding_dim)) 129 timesteps = 3 135 inputs = keras.Input((timesteps, embedding_dim)) 149 inputs = np.random.random((num_samples, timesteps, embedding_dim)) 158 timesteps = 3 164 inputs = keras.Input((timesteps, embedding_dim)) [all …]
|
D | wrappers_test.py | 301 timesteps = 2 305 x = np.random.random((samples, timesteps, dim)) 313 rnn(output_dim), merge_mode=mode, input_shape=(timesteps, dim))) 327 (None, timesteps, dim)) 346 timesteps = 2 349 x = np.random.random((samples, timesteps, dim)) 353 rnn(output_dim), input_shape=(timesteps, dim))) 365 timesteps = 2 370 x = np.random.random((samples, timesteps, dim)) 379 input_shape=(timesteps, dim))) [all …]
|
D | gru_v2_test.py | 110 timesteps = 3 117 x = np.random.random((num_samples, timesteps, embedding_dim)) 331 timesteps = 3 338 input_shape=(num_samples, timesteps, embedding_dim)) 357 timesteps = 3 365 input_shape=(num_samples, timesteps, embedding_dim)) 389 timesteps = 3 396 input_shape=(num_samples, timesteps, embedding_dim)) 422 timesteps = 3 432 input_length=timesteps, [all …]
|
D | recurrent_v2.py | 219 timesteps = input_shape[0] if self.time_major else input_shape[1] 236 input_length=timesteps, 354 timesteps = input_shape[0] if time_major else input_shape[1] 388 input_length=timesteps) 590 timesteps = input_shape[0] if self.time_major else input_shape[1] 607 input_length=timesteps, 754 timesteps = input_shape[0] if time_major else input_shape[1] 781 input_length=timesteps)
|
D | recurrent_test.py | 664 timesteps = 2 667 input1 = keras.Input(batch_shape=(num_samples, timesteps, embedding_dim)) 674 input2 = keras.Input(batch_shape=(num_samples, timesteps, embedding_dim)) 678 inputs = [np.random.random((num_samples, timesteps, embedding_dim)), 679 np.random.random((num_samples, timesteps, embedding_dim))] 808 timesteps = 2 810 output_shape = layer.compute_output_shape((None, timesteps, embedding_dim)) 811 expected_output_shape = [(None, timesteps, 6), 825 output_shape = layer.compute_output_shape((None, timesteps, embedding_dim)) 826 expected_output_shape = [(None, timesteps, 6),
|
D | wrappers.py | 215 timesteps = input_shape[1] 216 return tensor_shape.TensorShape([child_output_shape[0], timesteps] +
|
D | convolutional_recurrent.py | 368 timesteps = K.int_shape(inputs)[1] 393 input_length=timesteps)
|
D | recurrent.py | 711 timesteps = input_shape[0] if self.time_major else input_shape[1] 712 if self.unroll and timesteps is None: 762 input_length=timesteps,
|
/external/tensorflow/tensorflow/core/util/ctc/ |
D | ctc_beam_search_test.cc | 105 const int timesteps = 5; in TEST() local 119 int sequence_lengths[batch_size] = {timesteps}; in TEST() 120 float input_data_mat[timesteps][batch_size][num_classes] = { in TEST() 128 for (int t = 0; t < timesteps; ++t) { in TEST() 153 inputs.reserve(timesteps); in TEST() 154 for (int t = 0; t < timesteps; ++t) { in TEST() 185 const int timesteps = 1; in TEST() local 194 int sequence_lengths[batch_size] = {timesteps}; in TEST() 195 float input_data_mat[timesteps][batch_size][num_classes] = { in TEST() 203 inputs.reserve(timesteps); in TEST() [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_test.py | 1271 timesteps = 3 1279 input_shape=(timesteps, input_dim))) 1300 temporal_x_train = np.repeat(temporal_x_train, timesteps, axis=1) 1302 temporal_x_test = np.repeat(temporal_x_test, timesteps, axis=1) 1306 temporal_y_train = np.repeat(temporal_y_train, timesteps, axis=1) 1308 temporal_y_test = np.repeat(temporal_y_test, timesteps, axis=1) 1313 temporal_sample_weight, timesteps, axis=1) 1359 timesteps = 3 1367 input_shape=(timesteps, input_dim))) 1431 timesteps = 3 [all …]
|
/external/tensorflow/tensorflow/python/keras/ |
D | backend_test.py | 1007 timesteps = 6 1010 (num_samples, timesteps, input_dim)).astype(np.float32) 1015 np_mask = np.random.randint(2, size=(num_samples, timesteps)) 1054 [num_samples, timesteps, output_dim]) 1097 timesteps = 6 1100 (num_samples, timesteps, input_dim)).astype(np.float32) 1105 np_mask = np.random.randint(2, size=(num_samples, timesteps)) 1150 [num_samples, timesteps, output_dim])
|
D | model_subclassing_test.py | 287 timesteps = 1 288 batch_input_shape = (None, timesteps, dim) 308 model(array_ops.ones((32, timesteps, dim)))
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/state_space_models/ |
D | state_space_model.py | 985 def get_features_for_timesteps(self, timesteps): argument 987 return array_ops.zeros([array_ops.shape(timesteps)[0], 0], dtype=self.dtype)
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | conv_ops_test.py | 2698 timesteps = 600 2702 [batch_size, 1, timesteps, features], seed=1234)
|