• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 package org.apache.commons.math.dfp;
19 
20 import java.util.Arrays;
21 
22 import org.apache.commons.math.FieldElement;
23 
24 /**
25  *  Decimal floating point library for Java
26  *
27  *  <p>Another floating point class.  This one is built using radix 10000
28  *  which is 10<sup>4</sup>, so its almost decimal.</p>
29  *
30  *  <p>The design goals here are:
31  *  <ol>
32  *    <li>Decimal math, or close to it</li>
33  *    <li>Settable precision (but no mix between numbers using different settings)</li>
34  *    <li>Portability.  Code should be keep as portable as possible.</li>
35  *    <li>Performance</li>
36  *    <li>Accuracy  - Results should always be +/- 1 ULP for basic
37  *         algebraic operation</li>
38  *    <li>Comply with IEEE 854-1987 as much as possible.
39  *         (See IEEE 854-1987 notes below)</li>
40  *  </ol></p>
41  *
42  *  <p>Trade offs:
43  *  <ol>
44  *    <li>Memory foot print.  I'm using more memory than necessary to
45  *         represent numbers to get better performance.</li>
46  *    <li>Digits are bigger, so rounding is a greater loss.  So, if you
47  *         really need 12 decimal digits, better use 4 base 10000 digits
48  *         there can be one partially filled.</li>
49  *  </ol></p>
50  *
51  *  <p>Numbers are represented  in the following form:
52  *  <pre>
53  *  n  =  sign &times; mant &times; (radix)<sup>exp</sup>;</p>
54  *  </pre>
55  *  where sign is &plusmn;1, mantissa represents a fractional number between
56  *  zero and one.  mant[0] is the least significant digit.
57  *  exp is in the range of -32767 to 32768</p>
58  *
59  *  <p>IEEE 854-1987  Notes and differences</p>
60  *
61  *  <p>IEEE 854 requires the radix to be either 2 or 10.  The radix here is
62  *  10000, so that requirement is not met, but  it is possible that a
63  *  subclassed can be made to make it behave as a radix 10
64  *  number.  It is my opinion that if it looks and behaves as a radix
65  *  10 number then it is one and that requirement would be met.</p>
66  *
67  *  <p>The radix of 10000 was chosen because it should be faster to operate
68  *  on 4 decimal digits at once instead of one at a time.  Radix 10 behavior
69  *  can be realized by add an additional rounding step to ensure that
70  *  the number of decimal digits represented is constant.</p>
71  *
72  *  <p>The IEEE standard specifically leaves out internal data encoding,
73  *  so it is reasonable to conclude that such a subclass of this radix
74  *  10000 system is merely an encoding of a radix 10 system.</p>
75  *
76  *  <p>IEEE 854 also specifies the existence of "sub-normal" numbers.  This
77  *  class does not contain any such entities.  The most significant radix
78  *  10000 digit is always non-zero.  Instead, we support "gradual underflow"
79  *  by raising the underflow flag for numbers less with exponent less than
80  *  expMin, but don't flush to zero until the exponent reaches MIN_EXP-digits.
81  *  Thus the smallest number we can represent would be:
82  *  1E(-(MIN_EXP-digits-1)*4),  eg, for digits=5, MIN_EXP=-32767, that would
83  *  be 1e-131092.</p>
84  *
85  *  <p>IEEE 854 defines that the implied radix point lies just to the right
86  *  of the most significant digit and to the left of the remaining digits.
87  *  This implementation puts the implied radix point to the left of all
88  *  digits including the most significant one.  The most significant digit
89  *  here is the one just to the right of the radix point.  This is a fine
90  *  detail and is really only a matter of definition.  Any side effects of
91  *  this can be rendered invisible by a subclass.</p>
92  * @see DfpField
93  * @version $Revision: 1003889 $ $Date: 2010-10-02 23:11:55 +0200 (sam. 02 oct. 2010) $
94  * @since 2.2
95  */
96 public class Dfp implements FieldElement<Dfp> {
97 
98     /** The radix, or base of this system.  Set to 10000 */
99     public static final int RADIX = 10000;
100 
101     /** The minimum exponent before underflow is signaled.  Flush to zero
102      *  occurs at minExp-DIGITS */
103     public static final int MIN_EXP = -32767;
104 
105     /** The maximum exponent before overflow is signaled and results flushed
106      *  to infinity */
107     public static final int MAX_EXP =  32768;
108 
109     /** The amount under/overflows are scaled by before going to trap handler */
110     public static final int ERR_SCALE = 32760;
111 
112     /** Indicator value for normal finite numbers. */
113     public static final byte FINITE = 0;
114 
115     /** Indicator value for Infinity. */
116     public static final byte INFINITE = 1;
117 
118     /** Indicator value for signaling NaN. */
119     public static final byte SNAN = 2;
120 
121     /** Indicator value for quiet NaN. */
122     public static final byte QNAN = 3;
123 
124     /** String for NaN representation. */
125     private static final String NAN_STRING = "NaN";
126 
127     /** String for positive infinity representation. */
128     private static final String POS_INFINITY_STRING = "Infinity";
129 
130     /** String for negative infinity representation. */
131     private static final String NEG_INFINITY_STRING = "-Infinity";
132 
133     /** Name for traps triggered by addition. */
134     private static final String ADD_TRAP = "add";
135 
136     /** Name for traps triggered by multiplication. */
137     private static final String MULTIPLY_TRAP = "multiply";
138 
139     /** Name for traps triggered by division. */
140     private static final String DIVIDE_TRAP = "divide";
141 
142     /** Name for traps triggered by square root. */
143     private static final String SQRT_TRAP = "sqrt";
144 
145     /** Name for traps triggered by alignment. */
146     private static final String ALIGN_TRAP = "align";
147 
148     /** Name for traps triggered by truncation. */
149     private static final String TRUNC_TRAP = "trunc";
150 
151     /** Name for traps triggered by nextAfter. */
152     private static final String NEXT_AFTER_TRAP = "nextAfter";
153 
154     /** Name for traps triggered by lessThan. */
155     private static final String LESS_THAN_TRAP = "lessThan";
156 
157     /** Name for traps triggered by greaterThan. */
158     private static final String GREATER_THAN_TRAP = "greaterThan";
159 
160     /** Name for traps triggered by newInstance. */
161     private static final String NEW_INSTANCE_TRAP = "newInstance";
162 
163     /** Mantissa. */
164     protected int[] mant;
165 
166     /** Sign bit: & for positive, -1 for negative. */
167     protected byte sign;
168 
169     /** Exponent. */
170     protected int exp;
171 
172     /** Indicator for non-finite / non-number values. */
173     protected byte nans;
174 
175     /** Factory building similar Dfp's. */
176     private final DfpField field;
177 
178     /** Makes an instance with a value of zero.
179      * @param field field to which this instance belongs
180      */
Dfp(final DfpField field)181     protected Dfp(final DfpField field) {
182         mant = new int[field.getRadixDigits()];
183         sign = 1;
184         exp = 0;
185         nans = FINITE;
186         this.field = field;
187     }
188 
189     /** Create an instance from a byte value.
190      * @param field field to which this instance belongs
191      * @param x value to convert to an instance
192      */
Dfp(final DfpField field, byte x)193     protected Dfp(final DfpField field, byte x) {
194         this(field, (long) x);
195     }
196 
197     /** Create an instance from an int value.
198      * @param field field to which this instance belongs
199      * @param x value to convert to an instance
200      */
Dfp(final DfpField field, int x)201     protected Dfp(final DfpField field, int x) {
202         this(field, (long) x);
203     }
204 
205     /** Create an instance from a long value.
206      * @param field field to which this instance belongs
207      * @param x value to convert to an instance
208      */
Dfp(final DfpField field, long x)209     protected Dfp(final DfpField field, long x) {
210 
211         // initialize as if 0
212         mant = new int[field.getRadixDigits()];
213         nans = FINITE;
214         this.field = field;
215 
216         boolean isLongMin = false;
217         if (x == Long.MIN_VALUE) {
218             // special case for Long.MIN_VALUE (-9223372036854775808)
219             // we must shift it before taking its absolute value
220             isLongMin = true;
221             ++x;
222         }
223 
224         // set the sign
225         if (x < 0) {
226             sign = -1;
227             x = -x;
228         } else {
229             sign = 1;
230         }
231 
232         exp = 0;
233         while (x != 0) {
234             System.arraycopy(mant, mant.length - exp, mant, mant.length - 1 - exp, exp);
235             mant[mant.length - 1] = (int) (x % RADIX);
236             x /= RADIX;
237             exp++;
238         }
239 
240         if (isLongMin) {
241             // remove the shift added for Long.MIN_VALUE
242             // we know in this case that fixing the last digit is sufficient
243             for (int i = 0; i < mant.length - 1; i++) {
244                 if (mant[i] != 0) {
245                     mant[i]++;
246                     break;
247                 }
248             }
249         }
250     }
251 
252     /** Create an instance from a double value.
253      * @param field field to which this instance belongs
254      * @param x value to convert to an instance
255      */
Dfp(final DfpField field, double x)256     protected Dfp(final DfpField field, double x) {
257 
258         // initialize as if 0
259         mant = new int[field.getRadixDigits()];
260         sign = 1;
261         exp = 0;
262         nans = FINITE;
263         this.field = field;
264 
265         long bits = Double.doubleToLongBits(x);
266         long mantissa = bits & 0x000fffffffffffffL;
267         int exponent = (int) ((bits & 0x7ff0000000000000L) >> 52) - 1023;
268 
269         if (exponent == -1023) {
270             // Zero or sub-normal
271             if (x == 0) {
272                 return;
273             }
274 
275             exponent++;
276 
277             // Normalize the subnormal number
278             while ( (mantissa & 0x0010000000000000L) == 0) {
279                 exponent--;
280                 mantissa <<= 1;
281             }
282             mantissa &= 0x000fffffffffffffL;
283         }
284 
285         if (exponent == 1024) {
286             // infinity or NAN
287             if (x != x) {
288                 sign = (byte) 1;
289                 nans = QNAN;
290             } else if (x < 0) {
291                 sign = (byte) -1;
292                 nans = INFINITE;
293             } else {
294                 sign = (byte) 1;
295                 nans = INFINITE;
296             }
297             return;
298         }
299 
300         Dfp xdfp = new Dfp(field, mantissa);
301         xdfp = xdfp.divide(new Dfp(field, 4503599627370496l)).add(field.getOne());  // Divide by 2^52, then add one
302         xdfp = xdfp.multiply(DfpMath.pow(field.getTwo(), exponent));
303 
304         if ((bits & 0x8000000000000000L) != 0) {
305             xdfp = xdfp.negate();
306         }
307 
308         System.arraycopy(xdfp.mant, 0, mant, 0, mant.length);
309         sign = xdfp.sign;
310         exp  = xdfp.exp;
311         nans = xdfp.nans;
312 
313     }
314 
315     /** Copy constructor.
316      * @param d instance to copy
317      */
Dfp(final Dfp d)318     public Dfp(final Dfp d) {
319         mant  = d.mant.clone();
320         sign  = d.sign;
321         exp   = d.exp;
322         nans  = d.nans;
323         field = d.field;
324     }
325 
326     /** Create an instance from a String representation.
327      * @param field field to which this instance belongs
328      * @param s string representation of the instance
329      */
Dfp(final DfpField field, final String s)330     protected Dfp(final DfpField field, final String s) {
331 
332         // initialize as if 0
333         mant = new int[field.getRadixDigits()];
334         sign = 1;
335         exp = 0;
336         nans = FINITE;
337         this.field = field;
338 
339         boolean decimalFound = false;
340         final int rsize = 4;   // size of radix in decimal digits
341         final int offset = 4;  // Starting offset into Striped
342         final char[] striped = new char[getRadixDigits() * rsize + offset * 2];
343 
344         // Check some special cases
345         if (s.equals(POS_INFINITY_STRING)) {
346             sign = (byte) 1;
347             nans = INFINITE;
348             return;
349         }
350 
351         if (s.equals(NEG_INFINITY_STRING)) {
352             sign = (byte) -1;
353             nans = INFINITE;
354             return;
355         }
356 
357         if (s.equals(NAN_STRING)) {
358             sign = (byte) 1;
359             nans = QNAN;
360             return;
361         }
362 
363         // Check for scientific notation
364         int p = s.indexOf("e");
365         if (p == -1) { // try upper case?
366             p = s.indexOf("E");
367         }
368 
369         final String fpdecimal;
370         int sciexp = 0;
371         if (p != -1) {
372             // scientific notation
373             fpdecimal = s.substring(0, p);
374             String fpexp = s.substring(p+1);
375             boolean negative = false;
376 
377             for (int i=0; i<fpexp.length(); i++)
378             {
379                 if (fpexp.charAt(i) == '-')
380                 {
381                     negative = true;
382                     continue;
383                 }
384                 if (fpexp.charAt(i) >= '0' && fpexp.charAt(i) <= '9')
385                     sciexp = sciexp * 10 + fpexp.charAt(i) - '0';
386             }
387 
388             if (negative) {
389                 sciexp = -sciexp;
390             }
391         } else {
392             // normal case
393             fpdecimal = s;
394         }
395 
396         // If there is a minus sign in the number then it is negative
397         if (fpdecimal.indexOf("-") !=  -1) {
398             sign = -1;
399         }
400 
401         // First off, find all of the leading zeros, trailing zeros, and significant digits
402         p = 0;
403 
404         // Move p to first significant digit
405         int decimalPos = 0;
406         for (;;) {
407             if (fpdecimal.charAt(p) >= '1' && fpdecimal.charAt(p) <= '9') {
408                 break;
409             }
410 
411             if (decimalFound && fpdecimal.charAt(p) == '0') {
412                 decimalPos--;
413             }
414 
415             if (fpdecimal.charAt(p) == '.') {
416                 decimalFound = true;
417             }
418 
419             p++;
420 
421             if (p == fpdecimal.length()) {
422                 break;
423             }
424         }
425 
426         // Copy the string onto Stripped
427         int q = offset;
428         striped[0] = '0';
429         striped[1] = '0';
430         striped[2] = '0';
431         striped[3] = '0';
432         int significantDigits=0;
433         for(;;) {
434             if (p == (fpdecimal.length())) {
435                 break;
436             }
437 
438             // Don't want to run pass the end of the array
439             if (q == mant.length*rsize+offset+1) {
440                 break;
441             }
442 
443             if (fpdecimal.charAt(p) == '.') {
444                 decimalFound = true;
445                 decimalPos = significantDigits;
446                 p++;
447                 continue;
448             }
449 
450             if (fpdecimal.charAt(p) < '0' || fpdecimal.charAt(p) > '9') {
451                 p++;
452                 continue;
453             }
454 
455             striped[q] = fpdecimal.charAt(p);
456             q++;
457             p++;
458             significantDigits++;
459         }
460 
461 
462         // If the decimal point has been found then get rid of trailing zeros.
463         if (decimalFound && q != offset) {
464             for (;;) {
465                 q--;
466                 if (q == offset) {
467                     break;
468                 }
469                 if (striped[q] == '0') {
470                     significantDigits--;
471                 } else {
472                     break;
473                 }
474             }
475         }
476 
477         // special case of numbers like "0.00000"
478         if (decimalFound && significantDigits == 0) {
479             decimalPos = 0;
480         }
481 
482         // Implicit decimal point at end of number if not present
483         if (!decimalFound) {
484             decimalPos = q-offset;
485         }
486 
487         // Find the number of significant trailing zeros
488         q = offset;  // set q to point to first sig digit
489         p = significantDigits-1+offset;
490 
491         int trailingZeros = 0;
492         while (p > q) {
493             if (striped[p] != '0') {
494                 break;
495             }
496             trailingZeros++;
497             p--;
498         }
499 
500         // Make sure the decimal is on a mod 10000 boundary
501         int i = ((rsize * 100) - decimalPos - sciexp % rsize) % rsize;
502         q -= i;
503         decimalPos += i;
504 
505         // Make the mantissa length right by adding zeros at the end if necessary
506         while ((p - q) < (mant.length * rsize)) {
507             for (i = 0; i < rsize; i++) {
508                 striped[++p] = '0';
509             }
510         }
511 
512         // Ok, now we know how many trailing zeros there are,
513         // and where the least significant digit is
514         for (i = mant.length - 1; i >= 0; i--) {
515             mant[i] = (striped[q]   - '0') * 1000 +
516                       (striped[q+1] - '0') * 100  +
517                       (striped[q+2] - '0') * 10   +
518                       (striped[q+3] - '0');
519             q += 4;
520         }
521 
522 
523         exp = (decimalPos+sciexp) / rsize;
524 
525         if (q < striped.length) {
526             // Is there possible another digit?
527             round((striped[q] - '0')*1000);
528         }
529 
530     }
531 
532     /** Creates an instance with a non-finite value.
533      * @param field field to which this instance belongs
534      * @param sign sign of the Dfp to create
535      * @param nans code of the value, must be one of {@link #INFINITE},
536      * {@link #SNAN},  {@link #QNAN}
537      */
Dfp(final DfpField field, final byte sign, final byte nans)538     protected Dfp(final DfpField field, final byte sign, final byte nans) {
539         this.field = field;
540         this.mant    = new int[field.getRadixDigits()];
541         this.sign    = sign;
542         this.exp     = 0;
543         this.nans    = nans;
544     }
545 
546     /** Create an instance with a value of 0.
547      * Use this internally in preference to constructors to facilitate subclasses
548      * @return a new instance with a value of 0
549      */
newInstance()550     public Dfp newInstance() {
551         return new Dfp(getField());
552     }
553 
554     /** Create an instance from a byte value.
555      * @param x value to convert to an instance
556      * @return a new instance with value x
557      */
newInstance(final byte x)558     public Dfp newInstance(final byte x) {
559         return new Dfp(getField(), x);
560     }
561 
562     /** Create an instance from an int value.
563      * @param x value to convert to an instance
564      * @return a new instance with value x
565      */
newInstance(final int x)566     public Dfp newInstance(final int x) {
567         return new Dfp(getField(), x);
568     }
569 
570     /** Create an instance from a long value.
571      * @param x value to convert to an instance
572      * @return a new instance with value x
573      */
newInstance(final long x)574     public Dfp newInstance(final long x) {
575         return new Dfp(getField(), x);
576     }
577 
578     /** Create an instance from a double value.
579      * @param x value to convert to an instance
580      * @return a new instance with value x
581      */
newInstance(final double x)582     public Dfp newInstance(final double x) {
583         return new Dfp(getField(), x);
584     }
585 
586     /** Create an instance by copying an existing one.
587      * Use this internally in preference to constructors to facilitate subclasses.
588      * @param d instance to copy
589      * @return a new instance with the same value as d
590      */
newInstance(final Dfp d)591     public Dfp newInstance(final Dfp d) {
592 
593         // make sure we don't mix number with different precision
594         if (field.getRadixDigits() != d.field.getRadixDigits()) {
595             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
596             final Dfp result = newInstance(getZero());
597             result.nans = QNAN;
598             return dotrap(DfpField.FLAG_INVALID, NEW_INSTANCE_TRAP, d, result);
599         }
600 
601         return new Dfp(d);
602 
603     }
604 
605     /** Create an instance from a String representation.
606      * Use this internally in preference to constructors to facilitate subclasses.
607      * @param s string representation of the instance
608      * @return a new instance parsed from specified string
609      */
newInstance(final String s)610     public Dfp newInstance(final String s) {
611         return new Dfp(field, s);
612     }
613 
614     /** Creates an instance with a non-finite value.
615      * @param sig sign of the Dfp to create
616      * @param code code of the value, must be one of {@link #INFINITE},
617      * {@link #SNAN},  {@link #QNAN}
618      * @return a new instance with a non-finite value
619      */
newInstance(final byte sig, final byte code)620     public Dfp newInstance(final byte sig, final byte code) {
621         return field.newDfp(sig, code);
622     }
623 
624     /** Get the {@link org.apache.commons.math.Field Field} (really a {@link DfpField}) to which the instance belongs.
625      * <p>
626      * The field is linked to the number of digits and acts as a factory
627      * for {@link Dfp} instances.
628      * </p>
629      * @return {@link org.apache.commons.math.Field Field} (really a {@link DfpField}) to which the instance belongs
630      */
getField()631     public DfpField getField() {
632         return field;
633     }
634 
635     /** Get the number of radix digits of the instance.
636      * @return number of radix digits
637      */
getRadixDigits()638     public int getRadixDigits() {
639         return field.getRadixDigits();
640     }
641 
642     /** Get the constant 0.
643      * @return a Dfp with value zero
644      */
getZero()645     public Dfp getZero() {
646         return field.getZero();
647     }
648 
649     /** Get the constant 1.
650      * @return a Dfp with value one
651      */
getOne()652     public Dfp getOne() {
653         return field.getOne();
654     }
655 
656     /** Get the constant 2.
657      * @return a Dfp with value two
658      */
getTwo()659     public Dfp getTwo() {
660         return field.getTwo();
661     }
662 
663     /** Shift the mantissa left, and adjust the exponent to compensate.
664      */
shiftLeft()665     protected void shiftLeft() {
666         for (int i = mant.length - 1; i > 0; i--) {
667             mant[i] = mant[i-1];
668         }
669         mant[0] = 0;
670         exp--;
671     }
672 
673     /* Note that shiftRight() does not call round() as that round() itself
674      uses shiftRight() */
675     /** Shift the mantissa right, and adjust the exponent to compensate.
676      */
shiftRight()677     protected void shiftRight() {
678         for (int i = 0; i < mant.length - 1; i++) {
679             mant[i] = mant[i+1];
680         }
681         mant[mant.length - 1] = 0;
682         exp++;
683     }
684 
685     /** Make our exp equal to the supplied one, this may cause rounding.
686      *  Also causes de-normalized numbers.  These numbers are generally
687      *  dangerous because most routines assume normalized numbers.
688      *  Align doesn't round, so it will return the last digit destroyed
689      *  by shifting right.
690      *  @param e desired exponent
691      *  @return last digit destroyed by shifting right
692      */
align(int e)693     protected int align(int e) {
694         int lostdigit = 0;
695         boolean inexact = false;
696 
697         int diff = exp - e;
698 
699         int adiff = diff;
700         if (adiff < 0) {
701             adiff = -adiff;
702         }
703 
704         if (diff == 0) {
705             return 0;
706         }
707 
708         if (adiff > (mant.length + 1)) {
709             // Special case
710             Arrays.fill(mant, 0);
711             exp = e;
712 
713             field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
714             dotrap(DfpField.FLAG_INEXACT, ALIGN_TRAP, this, this);
715 
716             return 0;
717         }
718 
719         for (int i = 0; i < adiff; i++) {
720             if (diff < 0) {
721                 /* Keep track of loss -- only signal inexact after losing 2 digits.
722                  * the first lost digit is returned to add() and may be incorporated
723                  * into the result.
724                  */
725                 if (lostdigit != 0) {
726                     inexact = true;
727                 }
728 
729                 lostdigit = mant[0];
730 
731                 shiftRight();
732             } else {
733                 shiftLeft();
734             }
735         }
736 
737         if (inexact) {
738             field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
739             dotrap(DfpField.FLAG_INEXACT, ALIGN_TRAP, this, this);
740         }
741 
742         return lostdigit;
743 
744     }
745 
746     /** Check if instance is less than x.
747      * @param x number to check instance against
748      * @return true if instance is less than x and neither are NaN, false otherwise
749      */
lessThan(final Dfp x)750     public boolean lessThan(final Dfp x) {
751 
752         // make sure we don't mix number with different precision
753         if (field.getRadixDigits() != x.field.getRadixDigits()) {
754             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
755             final Dfp result = newInstance(getZero());
756             result.nans = QNAN;
757             dotrap(DfpField.FLAG_INVALID, LESS_THAN_TRAP, x, result);
758             return false;
759         }
760 
761         /* if a nan is involved, signal invalid and return false */
762         if (isNaN() || x.isNaN()) {
763             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
764             dotrap(DfpField.FLAG_INVALID, LESS_THAN_TRAP, x, newInstance(getZero()));
765             return false;
766         }
767 
768         return compare(this, x) < 0;
769     }
770 
771     /** Check if instance is greater than x.
772      * @param x number to check instance against
773      * @return true if instance is greater than x and neither are NaN, false otherwise
774      */
greaterThan(final Dfp x)775     public boolean greaterThan(final Dfp x) {
776 
777         // make sure we don't mix number with different precision
778         if (field.getRadixDigits() != x.field.getRadixDigits()) {
779             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
780             final Dfp result = newInstance(getZero());
781             result.nans = QNAN;
782             dotrap(DfpField.FLAG_INVALID, GREATER_THAN_TRAP, x, result);
783             return false;
784         }
785 
786         /* if a nan is involved, signal invalid and return false */
787         if (isNaN() || x.isNaN()) {
788             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
789             dotrap(DfpField.FLAG_INVALID, GREATER_THAN_TRAP, x, newInstance(getZero()));
790             return false;
791         }
792 
793         return compare(this, x) > 0;
794     }
795 
796     /** Check if instance is infinite.
797      * @return true if instance is infinite
798      */
isInfinite()799     public boolean isInfinite() {
800         return nans == INFINITE;
801     }
802 
803     /** Check if instance is not a number.
804      * @return true if instance is not a number
805      */
isNaN()806     public boolean isNaN() {
807         return (nans == QNAN) || (nans == SNAN);
808     }
809 
810     /** Check if instance is equal to x.
811      * @param other object to check instance against
812      * @return true if instance is equal to x and neither are NaN, false otherwise
813      */
814     @Override
equals(final Object other)815     public boolean equals(final Object other) {
816 
817         if (other instanceof Dfp) {
818             final Dfp x = (Dfp) other;
819             if (isNaN() || x.isNaN() || field.getRadixDigits() != x.field.getRadixDigits()) {
820                 return false;
821             }
822 
823             return compare(this, x) == 0;
824         }
825 
826         return false;
827 
828     }
829 
830     /**
831      * Gets a hashCode for the instance.
832      * @return a hash code value for this object
833      */
834     @Override
hashCode()835     public int hashCode() {
836         return 17 + (sign << 8) + (nans << 16) + exp + Arrays.hashCode(mant);
837     }
838 
839     /** Check if instance is not equal to x.
840      * @param x number to check instance against
841      * @return true if instance is not equal to x and neither are NaN, false otherwise
842      */
unequal(final Dfp x)843     public boolean unequal(final Dfp x) {
844         if (isNaN() || x.isNaN() || field.getRadixDigits() != x.field.getRadixDigits()) {
845             return false;
846         }
847 
848         return greaterThan(x) || lessThan(x);
849     }
850 
851     /** Compare two instances.
852      * @param a first instance in comparison
853      * @param b second instance in comparison
854      * @return -1 if a<b, 1 if a>b and 0 if a==b
855      *  Note this method does not properly handle NaNs or numbers with different precision.
856      */
compare(final Dfp a, final Dfp b)857     private static int compare(final Dfp a, final Dfp b) {
858         // Ignore the sign of zero
859         if (a.mant[a.mant.length - 1] == 0 && b.mant[b.mant.length - 1] == 0 &&
860             a.nans == FINITE && b.nans == FINITE) {
861             return 0;
862         }
863 
864         if (a.sign != b.sign) {
865             if (a.sign == -1) {
866                 return -1;
867             } else {
868                 return 1;
869             }
870         }
871 
872         // deal with the infinities
873         if (a.nans == INFINITE && b.nans == FINITE) {
874             return a.sign;
875         }
876 
877         if (a.nans == FINITE && b.nans == INFINITE) {
878             return -b.sign;
879         }
880 
881         if (a.nans == INFINITE && b.nans == INFINITE) {
882             return 0;
883         }
884 
885         // Handle special case when a or b is zero, by ignoring the exponents
886         if (b.mant[b.mant.length-1] != 0 && a.mant[b.mant.length-1] != 0) {
887             if (a.exp < b.exp) {
888                 return -a.sign;
889             }
890 
891             if (a.exp > b.exp) {
892                 return a.sign;
893             }
894         }
895 
896         // compare the mantissas
897         for (int i = a.mant.length - 1; i >= 0; i--) {
898             if (a.mant[i] > b.mant[i]) {
899                 return a.sign;
900             }
901 
902             if (a.mant[i] < b.mant[i]) {
903                 return -a.sign;
904             }
905         }
906 
907         return 0;
908 
909     }
910 
911     /** Round to nearest integer using the round-half-even method.
912      *  That is round to nearest integer unless both are equidistant.
913      *  In which case round to the even one.
914      *  @return rounded value
915      */
rint()916     public Dfp rint() {
917         return trunc(DfpField.RoundingMode.ROUND_HALF_EVEN);
918     }
919 
920     /** Round to an integer using the round floor mode.
921      * That is, round toward -Infinity
922      *  @return rounded value
923      */
floor()924     public Dfp floor() {
925         return trunc(DfpField.RoundingMode.ROUND_FLOOR);
926     }
927 
928     /** Round to an integer using the round ceil mode.
929      * That is, round toward +Infinity
930      *  @return rounded value
931      */
ceil()932     public Dfp ceil() {
933         return trunc(DfpField.RoundingMode.ROUND_CEIL);
934     }
935 
936     /** Returns the IEEE remainder.
937      * @param d divisor
938      * @return this less n &times; d, where n is the integer closest to this/d
939      */
remainder(final Dfp d)940     public Dfp remainder(final Dfp d) {
941 
942         final Dfp result = this.subtract(this.divide(d).rint().multiply(d));
943 
944         // IEEE 854-1987 says that if the result is zero, then it carries the sign of this
945         if (result.mant[mant.length-1] == 0) {
946             result.sign = sign;
947         }
948 
949         return result;
950 
951     }
952 
953     /** Does the integer conversions with the specified rounding.
954      * @param rmode rounding mode to use
955      * @return truncated value
956      */
trunc(final DfpField.RoundingMode rmode)957     protected Dfp trunc(final DfpField.RoundingMode rmode) {
958         boolean changed = false;
959 
960         if (isNaN()) {
961             return newInstance(this);
962         }
963 
964         if (nans == INFINITE) {
965             return newInstance(this);
966         }
967 
968         if (mant[mant.length-1] == 0) {
969             // a is zero
970             return newInstance(this);
971         }
972 
973         /* If the exponent is less than zero then we can certainly
974          * return zero */
975         if (exp < 0) {
976             field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
977             Dfp result = newInstance(getZero());
978             result = dotrap(DfpField.FLAG_INEXACT, TRUNC_TRAP, this, result);
979             return result;
980         }
981 
982         /* If the exponent is greater than or equal to digits, then it
983          * must already be an integer since there is no precision left
984          * for any fractional part */
985 
986         if (exp >= mant.length) {
987             return newInstance(this);
988         }
989 
990         /* General case:  create another dfp, result, that contains the
991          * a with the fractional part lopped off.  */
992 
993         Dfp result = newInstance(this);
994         for (int i = 0; i < mant.length-result.exp; i++) {
995             changed |= result.mant[i] != 0;
996             result.mant[i] = 0;
997         }
998 
999         if (changed) {
1000             switch (rmode) {
1001                 case ROUND_FLOOR:
1002                     if (result.sign == -1) {
1003                         // then we must increment the mantissa by one
1004                         result = result.add(newInstance(-1));
1005                     }
1006                     break;
1007 
1008                 case ROUND_CEIL:
1009                     if (result.sign == 1) {
1010                         // then we must increment the mantissa by one
1011                         result = result.add(getOne());
1012                     }
1013                     break;
1014 
1015                 case ROUND_HALF_EVEN:
1016                 default:
1017                     final Dfp half = newInstance("0.5");
1018                     Dfp a = subtract(result);  // difference between this and result
1019                     a.sign = 1;            // force positive (take abs)
1020                     if (a.greaterThan(half)) {
1021                         a = newInstance(getOne());
1022                         a.sign = sign;
1023                         result = result.add(a);
1024                     }
1025 
1026                     /** If exactly equal to 1/2 and odd then increment */
1027                     if (a.equals(half) && result.exp > 0 && (result.mant[mant.length-result.exp]&1) != 0) {
1028                         a = newInstance(getOne());
1029                         a.sign = sign;
1030                         result = result.add(a);
1031                     }
1032                     break;
1033             }
1034 
1035             field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);  // signal inexact
1036             result = dotrap(DfpField.FLAG_INEXACT, TRUNC_TRAP, this, result);
1037             return result;
1038         }
1039 
1040         return result;
1041     }
1042 
1043     /** Convert this to an integer.
1044      * If greater than 2147483647, it returns 2147483647. If less than -2147483648 it returns -2147483648.
1045      * @return converted number
1046      */
intValue()1047     public int intValue() {
1048         Dfp rounded;
1049         int result = 0;
1050 
1051         rounded = rint();
1052 
1053         if (rounded.greaterThan(newInstance(2147483647))) {
1054             return 2147483647;
1055         }
1056 
1057         if (rounded.lessThan(newInstance(-2147483648))) {
1058             return -2147483648;
1059         }
1060 
1061         for (int i = mant.length - 1; i >= mant.length - rounded.exp; i--) {
1062             result = result * RADIX + rounded.mant[i];
1063         }
1064 
1065         if (rounded.sign == -1) {
1066             result = -result;
1067         }
1068 
1069         return result;
1070     }
1071 
1072     /** Get the exponent of the greatest power of 10000 that is
1073      *  less than or equal to the absolute value of this.  I.E.  if
1074      *  this is 10<sup>6</sup> then log10K would return 1.
1075      *  @return integer base 10000 logarithm
1076      */
log10K()1077     public int log10K() {
1078         return exp - 1;
1079     }
1080 
1081     /** Get the specified  power of 10000.
1082      * @param e desired power
1083      * @return 10000<sup>e</sup>
1084      */
power10K(final int e)1085     public Dfp power10K(final int e) {
1086         Dfp d = newInstance(getOne());
1087         d.exp = e + 1;
1088         return d;
1089     }
1090 
1091     /** Get the exponent of the greatest power of 10 that is less than or equal to abs(this).
1092      *  @return integer base 10 logarithm
1093      */
log10()1094     public int log10()  {
1095         if (mant[mant.length-1] > 1000) {
1096             return exp * 4 - 1;
1097         }
1098         if (mant[mant.length-1] > 100) {
1099             return exp * 4 - 2;
1100         }
1101         if (mant[mant.length-1] > 10) {
1102             return exp * 4 - 3;
1103         }
1104         return exp * 4 - 4;
1105     }
1106 
1107     /** Return the specified  power of 10.
1108      * @param e desired power
1109      * @return 10<sup>e</sup>
1110      */
power10(final int e)1111     public Dfp power10(final int e) {
1112         Dfp d = newInstance(getOne());
1113 
1114         if (e >= 0) {
1115             d.exp = e / 4 + 1;
1116         } else {
1117             d.exp = (e + 1) / 4;
1118         }
1119 
1120         switch ((e % 4 + 4) % 4) {
1121             case 0:
1122                 break;
1123             case 1:
1124                 d = d.multiply(10);
1125                 break;
1126             case 2:
1127                 d = d.multiply(100);
1128                 break;
1129             default:
1130                 d = d.multiply(1000);
1131         }
1132 
1133         return d;
1134     }
1135 
1136     /** Negate the mantissa of this by computing the complement.
1137      *  Leaves the sign bit unchanged, used internally by add.
1138      *  Denormalized numbers are handled properly here.
1139      *  @param extra ???
1140      *  @return ???
1141      */
complement(int extra)1142     protected int complement(int extra) {
1143 
1144         extra = RADIX-extra;
1145         for (int i = 0; i < mant.length; i++) {
1146             mant[i] = RADIX-mant[i]-1;
1147         }
1148 
1149         int rh = extra / RADIX;
1150         extra = extra - rh * RADIX;
1151         for (int i = 0; i < mant.length; i++) {
1152             final int r = mant[i] + rh;
1153             rh = r / RADIX;
1154             mant[i] = r - rh * RADIX;
1155         }
1156 
1157         return extra;
1158     }
1159 
1160     /** Add x to this.
1161      * @param x number to add
1162      * @return sum of this and x
1163      */
add(final Dfp x)1164     public Dfp add(final Dfp x) {
1165 
1166         // make sure we don't mix number with different precision
1167         if (field.getRadixDigits() != x.field.getRadixDigits()) {
1168             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1169             final Dfp result = newInstance(getZero());
1170             result.nans = QNAN;
1171             return dotrap(DfpField.FLAG_INVALID, ADD_TRAP, x, result);
1172         }
1173 
1174         /* handle special cases */
1175         if (nans != FINITE || x.nans != FINITE) {
1176             if (isNaN()) {
1177                 return this;
1178             }
1179 
1180             if (x.isNaN()) {
1181                 return x;
1182             }
1183 
1184             if (nans == INFINITE && x.nans == FINITE) {
1185                 return this;
1186             }
1187 
1188             if (x.nans == INFINITE && nans == FINITE) {
1189                 return x;
1190             }
1191 
1192             if (x.nans == INFINITE && nans == INFINITE && sign == x.sign) {
1193                 return x;
1194             }
1195 
1196             if (x.nans == INFINITE && nans == INFINITE && sign != x.sign) {
1197                 field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1198                 Dfp result = newInstance(getZero());
1199                 result.nans = QNAN;
1200                 result = dotrap(DfpField.FLAG_INVALID, ADD_TRAP, x, result);
1201                 return result;
1202             }
1203         }
1204 
1205         /* copy this and the arg */
1206         Dfp a = newInstance(this);
1207         Dfp b = newInstance(x);
1208 
1209         /* initialize the result object */
1210         Dfp result = newInstance(getZero());
1211 
1212         /* Make all numbers positive, but remember their sign */
1213         final byte asign = a.sign;
1214         final byte bsign = b.sign;
1215 
1216         a.sign = 1;
1217         b.sign = 1;
1218 
1219         /* The result will be signed like the arg with greatest magnitude */
1220         byte rsign = bsign;
1221         if (compare(a, b) > 0) {
1222             rsign = asign;
1223         }
1224 
1225         /* Handle special case when a or b is zero, by setting the exponent
1226        of the zero number equal to the other one.  This avoids an alignment
1227        which would cause catastropic loss of precision */
1228         if (b.mant[mant.length-1] == 0) {
1229             b.exp = a.exp;
1230         }
1231 
1232         if (a.mant[mant.length-1] == 0) {
1233             a.exp = b.exp;
1234         }
1235 
1236         /* align number with the smaller exponent */
1237         int aextradigit = 0;
1238         int bextradigit = 0;
1239         if (a.exp < b.exp) {
1240             aextradigit = a.align(b.exp);
1241         } else {
1242             bextradigit = b.align(a.exp);
1243         }
1244 
1245         /* complement the smaller of the two if the signs are different */
1246         if (asign != bsign) {
1247             if (asign == rsign) {
1248                 bextradigit = b.complement(bextradigit);
1249             } else {
1250                 aextradigit = a.complement(aextradigit);
1251             }
1252         }
1253 
1254         /* add the mantissas */
1255         int rh = 0; /* acts as a carry */
1256         for (int i = 0; i < mant.length; i++) {
1257             final int r = a.mant[i]+b.mant[i]+rh;
1258             rh = r / RADIX;
1259             result.mant[i] = r - rh * RADIX;
1260         }
1261         result.exp = a.exp;
1262         result.sign = rsign;
1263 
1264         /* handle overflow -- note, when asign!=bsign an overflow is
1265          * normal and should be ignored.  */
1266 
1267         if (rh != 0 && (asign == bsign)) {
1268             final int lostdigit = result.mant[0];
1269             result.shiftRight();
1270             result.mant[mant.length-1] = rh;
1271             final int excp = result.round(lostdigit);
1272             if (excp != 0) {
1273                 result = dotrap(excp, ADD_TRAP, x, result);
1274             }
1275         }
1276 
1277         /* normalize the result */
1278         for (int i = 0; i < mant.length; i++) {
1279             if (result.mant[mant.length-1] != 0) {
1280                 break;
1281             }
1282             result.shiftLeft();
1283             if (i == 0) {
1284                 result.mant[0] = aextradigit+bextradigit;
1285                 aextradigit = 0;
1286                 bextradigit = 0;
1287             }
1288         }
1289 
1290         /* result is zero if after normalization the most sig. digit is zero */
1291         if (result.mant[mant.length-1] == 0) {
1292             result.exp = 0;
1293 
1294             if (asign != bsign) {
1295                 // Unless adding 2 negative zeros, sign is positive
1296                 result.sign = 1;  // Per IEEE 854-1987 Section 6.3
1297             }
1298         }
1299 
1300         /* Call round to test for over/under flows */
1301         final int excp = result.round(aextradigit + bextradigit);
1302         if (excp != 0) {
1303             result = dotrap(excp, ADD_TRAP, x, result);
1304         }
1305 
1306         return result;
1307     }
1308 
1309     /** Returns a number that is this number with the sign bit reversed.
1310      * @return the opposite of this
1311      */
negate()1312     public Dfp negate() {
1313         Dfp result = newInstance(this);
1314         result.sign = (byte) - result.sign;
1315         return result;
1316     }
1317 
1318     /** Subtract x from this.
1319      * @param x number to subtract
1320      * @return difference of this and a
1321      */
subtract(final Dfp x)1322     public Dfp subtract(final Dfp x) {
1323         return add(x.negate());
1324     }
1325 
1326     /** Round this given the next digit n using the current rounding mode.
1327      * @param n ???
1328      * @return the IEEE flag if an exception occurred
1329      */
round(int n)1330     protected int round(int n) {
1331         boolean inc = false;
1332         switch (field.getRoundingMode()) {
1333             case ROUND_DOWN:
1334                 inc = false;
1335                 break;
1336 
1337             case ROUND_UP:
1338                 inc = n != 0;       // round up if n!=0
1339                 break;
1340 
1341             case ROUND_HALF_UP:
1342                 inc = n >= 5000;  // round half up
1343                 break;
1344 
1345             case ROUND_HALF_DOWN:
1346                 inc = n > 5000;  // round half down
1347                 break;
1348 
1349             case ROUND_HALF_EVEN:
1350                 inc = n > 5000 || (n == 5000 && (mant[0] & 1) == 1);  // round half-even
1351                 break;
1352 
1353             case ROUND_HALF_ODD:
1354                 inc = n > 5000 || (n == 5000 && (mant[0] & 1) == 0);  // round half-odd
1355                 break;
1356 
1357             case ROUND_CEIL:
1358                 inc = sign == 1 && n != 0;  // round ceil
1359                 break;
1360 
1361             case ROUND_FLOOR:
1362             default:
1363                 inc = sign == -1 && n != 0;  // round floor
1364                 break;
1365         }
1366 
1367         if (inc) {
1368             // increment if necessary
1369             int rh = 1;
1370             for (int i = 0; i < mant.length; i++) {
1371                 final int r = mant[i] + rh;
1372                 rh = r / RADIX;
1373                 mant[i] = r - rh * RADIX;
1374             }
1375 
1376             if (rh != 0) {
1377                 shiftRight();
1378                 mant[mant.length-1] = rh;
1379             }
1380         }
1381 
1382         // check for exceptional cases and raise signals if necessary
1383         if (exp < MIN_EXP) {
1384             // Gradual Underflow
1385             field.setIEEEFlagsBits(DfpField.FLAG_UNDERFLOW);
1386             return DfpField.FLAG_UNDERFLOW;
1387         }
1388 
1389         if (exp > MAX_EXP) {
1390             // Overflow
1391             field.setIEEEFlagsBits(DfpField.FLAG_OVERFLOW);
1392             return DfpField.FLAG_OVERFLOW;
1393         }
1394 
1395         if (n != 0) {
1396             // Inexact
1397             field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
1398             return DfpField.FLAG_INEXACT;
1399         }
1400 
1401         return 0;
1402 
1403     }
1404 
1405     /** Multiply this by x.
1406      * @param x multiplicand
1407      * @return product of this and x
1408      */
multiply(final Dfp x)1409     public Dfp multiply(final Dfp x) {
1410 
1411         // make sure we don't mix number with different precision
1412         if (field.getRadixDigits() != x.field.getRadixDigits()) {
1413             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1414             final Dfp result = newInstance(getZero());
1415             result.nans = QNAN;
1416             return dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, x, result);
1417         }
1418 
1419         Dfp result = newInstance(getZero());
1420 
1421         /* handle special cases */
1422         if (nans != FINITE || x.nans != FINITE) {
1423             if (isNaN()) {
1424                 return this;
1425             }
1426 
1427             if (x.isNaN()) {
1428                 return x;
1429             }
1430 
1431             if (nans == INFINITE && x.nans == FINITE && x.mant[mant.length-1] != 0) {
1432                 result = newInstance(this);
1433                 result.sign = (byte) (sign * x.sign);
1434                 return result;
1435             }
1436 
1437             if (x.nans == INFINITE && nans == FINITE && mant[mant.length-1] != 0) {
1438                 result = newInstance(x);
1439                 result.sign = (byte) (sign * x.sign);
1440                 return result;
1441             }
1442 
1443             if (x.nans == INFINITE && nans == INFINITE) {
1444                 result = newInstance(this);
1445                 result.sign = (byte) (sign * x.sign);
1446                 return result;
1447             }
1448 
1449             if ( (x.nans == INFINITE && nans == FINITE && mant[mant.length-1] == 0) ||
1450                     (nans == INFINITE && x.nans == FINITE && x.mant[mant.length-1] == 0) ) {
1451                 field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1452                 result = newInstance(getZero());
1453                 result.nans = QNAN;
1454                 result = dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, x, result);
1455                 return result;
1456             }
1457         }
1458 
1459         int[] product = new int[mant.length*2];  // Big enough to hold even the largest result
1460 
1461         for (int i = 0; i < mant.length; i++) {
1462             int rh = 0;  // acts as a carry
1463             for (int j=0; j<mant.length; j++) {
1464                 int r = mant[i] * x.mant[j];    // multiply the 2 digits
1465                 r = r + product[i+j] + rh;  // add to the product digit with carry in
1466 
1467                 rh = r / RADIX;
1468                 product[i+j] = r - rh * RADIX;
1469             }
1470             product[i+mant.length] = rh;
1471         }
1472 
1473         // Find the most sig digit
1474         int md = mant.length * 2 - 1;  // default, in case result is zero
1475         for (int i = mant.length * 2 - 1; i >= 0; i--) {
1476             if (product[i] != 0) {
1477                 md = i;
1478                 break;
1479             }
1480         }
1481 
1482         // Copy the digits into the result
1483         for (int i = 0; i < mant.length; i++) {
1484             result.mant[mant.length - i - 1] = product[md - i];
1485         }
1486 
1487         // Fixup the exponent.
1488         result.exp = exp + x.exp + md - 2 * mant.length + 1;
1489         result.sign = (byte)((sign == x.sign)?1:-1);
1490 
1491         if (result.mant[mant.length-1] == 0) {
1492             // if result is zero, set exp to zero
1493             result.exp = 0;
1494         }
1495 
1496         final int excp;
1497         if (md > (mant.length-1)) {
1498             excp = result.round(product[md-mant.length]);
1499         } else {
1500             excp = result.round(0); // has no effect except to check status
1501         }
1502 
1503         if (excp != 0) {
1504             result = dotrap(excp, MULTIPLY_TRAP, x, result);
1505         }
1506 
1507         return result;
1508 
1509     }
1510 
1511     /** Multiply this by a single digit 0&lt;=x&lt;radix.
1512      * There are speed advantages in this special case
1513      * @param x multiplicand
1514      * @return product of this and x
1515      */
multiply(final int x)1516     public Dfp multiply(final int x) {
1517         Dfp result = newInstance(this);
1518 
1519         /* handle special cases */
1520         if (nans != FINITE) {
1521             if (isNaN()) {
1522                 return this;
1523             }
1524 
1525             if (nans == INFINITE && x != 0) {
1526                 result = newInstance(this);
1527                 return result;
1528             }
1529 
1530             if (nans == INFINITE && x == 0) {
1531                 field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1532                 result = newInstance(getZero());
1533                 result.nans = QNAN;
1534                 result = dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, newInstance(getZero()), result);
1535                 return result;
1536             }
1537         }
1538 
1539         /* range check x */
1540         if (x < 0 || x >= RADIX) {
1541             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1542             result = newInstance(getZero());
1543             result.nans = QNAN;
1544             result = dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, result, result);
1545             return result;
1546         }
1547 
1548         int rh = 0;
1549         for (int i = 0; i < mant.length; i++) {
1550             final int r = mant[i] * x + rh;
1551             rh = r / RADIX;
1552             result.mant[i] = r - rh * RADIX;
1553         }
1554 
1555         int lostdigit = 0;
1556         if (rh != 0) {
1557             lostdigit = result.mant[0];
1558             result.shiftRight();
1559             result.mant[mant.length-1] = rh;
1560         }
1561 
1562         if (result.mant[mant.length-1] == 0) { // if result is zero, set exp to zero
1563             result.exp = 0;
1564         }
1565 
1566         final int excp = result.round(lostdigit);
1567         if (excp != 0) {
1568             result = dotrap(excp, MULTIPLY_TRAP, result, result);
1569         }
1570 
1571         return result;
1572     }
1573 
1574     /** Divide this by divisor.
1575      * @param divisor divisor
1576      * @return quotient of this by divisor
1577      */
divide(Dfp divisor)1578     public Dfp divide(Dfp divisor) {
1579         int dividend[]; // current status of the dividend
1580         int quotient[]; // quotient
1581         int remainder[];// remainder
1582         int qd;         // current quotient digit we're working with
1583         int nsqd;       // number of significant quotient digits we have
1584         int trial=0;    // trial quotient digit
1585         int minadj;     // minimum adjustment
1586         boolean trialgood; // Flag to indicate a good trail digit
1587         int md=0;       // most sig digit in result
1588         int excp;       // exceptions
1589 
1590         // make sure we don't mix number with different precision
1591         if (field.getRadixDigits() != divisor.field.getRadixDigits()) {
1592             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1593             final Dfp result = newInstance(getZero());
1594             result.nans = QNAN;
1595             return dotrap(DfpField.FLAG_INVALID, DIVIDE_TRAP, divisor, result);
1596         }
1597 
1598         Dfp result = newInstance(getZero());
1599 
1600         /* handle special cases */
1601         if (nans != FINITE || divisor.nans != FINITE) {
1602             if (isNaN()) {
1603                 return this;
1604             }
1605 
1606             if (divisor.isNaN()) {
1607                 return divisor;
1608             }
1609 
1610             if (nans == INFINITE && divisor.nans == FINITE) {
1611                 result = newInstance(this);
1612                 result.sign = (byte) (sign * divisor.sign);
1613                 return result;
1614             }
1615 
1616             if (divisor.nans == INFINITE && nans == FINITE) {
1617                 result = newInstance(getZero());
1618                 result.sign = (byte) (sign * divisor.sign);
1619                 return result;
1620             }
1621 
1622             if (divisor.nans == INFINITE && nans == INFINITE) {
1623                 field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1624                 result = newInstance(getZero());
1625                 result.nans = QNAN;
1626                 result = dotrap(DfpField.FLAG_INVALID, DIVIDE_TRAP, divisor, result);
1627                 return result;
1628             }
1629         }
1630 
1631         /* Test for divide by zero */
1632         if (divisor.mant[mant.length-1] == 0) {
1633             field.setIEEEFlagsBits(DfpField.FLAG_DIV_ZERO);
1634             result = newInstance(getZero());
1635             result.sign = (byte) (sign * divisor.sign);
1636             result.nans = INFINITE;
1637             result = dotrap(DfpField.FLAG_DIV_ZERO, DIVIDE_TRAP, divisor, result);
1638             return result;
1639         }
1640 
1641         dividend = new int[mant.length+1];  // one extra digit needed
1642         quotient = new int[mant.length+2];  // two extra digits needed 1 for overflow, 1 for rounding
1643         remainder = new int[mant.length+1]; // one extra digit needed
1644 
1645         /* Initialize our most significant digits to zero */
1646 
1647         dividend[mant.length] = 0;
1648         quotient[mant.length] = 0;
1649         quotient[mant.length+1] = 0;
1650         remainder[mant.length] = 0;
1651 
1652         /* copy our mantissa into the dividend, initialize the
1653        quotient while we are at it */
1654 
1655         for (int i = 0; i < mant.length; i++) {
1656             dividend[i] = mant[i];
1657             quotient[i] = 0;
1658             remainder[i] = 0;
1659         }
1660 
1661         /* outer loop.  Once per quotient digit */
1662         nsqd = 0;
1663         for (qd = mant.length+1; qd >= 0; qd--) {
1664             /* Determine outer limits of our quotient digit */
1665 
1666             // r =  most sig 2 digits of dividend
1667             final int divMsb = dividend[mant.length]*RADIX+dividend[mant.length-1];
1668             int min = divMsb       / (divisor.mant[mant.length-1]+1);
1669             int max = (divMsb + 1) / divisor.mant[mant.length-1];
1670 
1671             trialgood = false;
1672             while (!trialgood) {
1673                 // try the mean
1674                 trial = (min+max)/2;
1675 
1676                 /* Multiply by divisor and store as remainder */
1677                 int rh = 0;
1678                 for (int i = 0; i < mant.length + 1; i++) {
1679                     int dm = (i<mant.length)?divisor.mant[i]:0;
1680                     final int r = (dm * trial) + rh;
1681                     rh = r / RADIX;
1682                     remainder[i] = r - rh * RADIX;
1683                 }
1684 
1685                 /* subtract the remainder from the dividend */
1686                 rh = 1;  // carry in to aid the subtraction
1687                 for (int i = 0; i < mant.length + 1; i++) {
1688                     final int r = ((RADIX-1) - remainder[i]) + dividend[i] + rh;
1689                     rh = r / RADIX;
1690                     remainder[i] = r - rh * RADIX;
1691                 }
1692 
1693                 /* Lets analyze what we have here */
1694                 if (rh == 0) {
1695                     // trial is too big -- negative remainder
1696                     max = trial-1;
1697                     continue;
1698                 }
1699 
1700                 /* find out how far off the remainder is telling us we are */
1701                 minadj = (remainder[mant.length] * RADIX)+remainder[mant.length-1];
1702                 minadj = minadj / (divisor.mant[mant.length-1]+1);
1703 
1704                 if (minadj >= 2) {
1705                     min = trial+minadj;  // update the minimum
1706                     continue;
1707                 }
1708 
1709                 /* May have a good one here, check more thoroughly.  Basically
1710            its a good one if it is less than the divisor */
1711                 trialgood = false;  // assume false
1712                 for (int i = mant.length - 1; i >= 0; i--) {
1713                     if (divisor.mant[i] > remainder[i]) {
1714                         trialgood = true;
1715                     }
1716                     if (divisor.mant[i] < remainder[i]) {
1717                         break;
1718                     }
1719                 }
1720 
1721                 if (remainder[mant.length] != 0) {
1722                     trialgood = false;
1723                 }
1724 
1725                 if (trialgood == false) {
1726                     min = trial+1;
1727                 }
1728             }
1729 
1730             /* Great we have a digit! */
1731             quotient[qd] = trial;
1732             if (trial != 0 || nsqd != 0) {
1733                 nsqd++;
1734             }
1735 
1736             if (field.getRoundingMode() == DfpField.RoundingMode.ROUND_DOWN && nsqd == mant.length) {
1737                 // We have enough for this mode
1738                 break;
1739             }
1740 
1741             if (nsqd > mant.length) {
1742                 // We have enough digits
1743                 break;
1744             }
1745 
1746             /* move the remainder into the dividend while left shifting */
1747             dividend[0] = 0;
1748             for (int i = 0; i < mant.length; i++) {
1749                 dividend[i + 1] = remainder[i];
1750             }
1751         }
1752 
1753         /* Find the most sig digit */
1754         md = mant.length;  // default
1755         for (int i = mant.length + 1; i >= 0; i--) {
1756             if (quotient[i] != 0) {
1757                 md = i;
1758                 break;
1759             }
1760         }
1761 
1762         /* Copy the digits into the result */
1763         for (int i=0; i<mant.length; i++) {
1764             result.mant[mant.length-i-1] = quotient[md-i];
1765         }
1766 
1767         /* Fixup the exponent. */
1768         result.exp = exp - divisor.exp + md - mant.length;
1769         result.sign = (byte) ((sign == divisor.sign) ? 1 : -1);
1770 
1771         if (result.mant[mant.length-1] == 0) { // if result is zero, set exp to zero
1772             result.exp = 0;
1773         }
1774 
1775         if (md > (mant.length-1)) {
1776             excp = result.round(quotient[md-mant.length]);
1777         } else {
1778             excp = result.round(0);
1779         }
1780 
1781         if (excp != 0) {
1782             result = dotrap(excp, DIVIDE_TRAP, divisor, result);
1783         }
1784 
1785         return result;
1786     }
1787 
1788     /** Divide by a single digit less than radix.
1789      *  Special case, so there are speed advantages. 0 &lt;= divisor &lt; radix
1790      * @param divisor divisor
1791      * @return quotient of this by divisor
1792      */
divide(int divisor)1793     public Dfp divide(int divisor) {
1794 
1795         // Handle special cases
1796         if (nans != FINITE) {
1797             if (isNaN()) {
1798                 return this;
1799             }
1800 
1801             if (nans == INFINITE) {
1802                 return newInstance(this);
1803             }
1804         }
1805 
1806         // Test for divide by zero
1807         if (divisor == 0) {
1808             field.setIEEEFlagsBits(DfpField.FLAG_DIV_ZERO);
1809             Dfp result = newInstance(getZero());
1810             result.sign = sign;
1811             result.nans = INFINITE;
1812             result = dotrap(DfpField.FLAG_DIV_ZERO, DIVIDE_TRAP, getZero(), result);
1813             return result;
1814         }
1815 
1816         // range check divisor
1817         if (divisor < 0 || divisor >= RADIX) {
1818             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1819             Dfp result = newInstance(getZero());
1820             result.nans = QNAN;
1821             result = dotrap(DfpField.FLAG_INVALID, DIVIDE_TRAP, result, result);
1822             return result;
1823         }
1824 
1825         Dfp result = newInstance(this);
1826 
1827         int rl = 0;
1828         for (int i = mant.length-1; i >= 0; i--) {
1829             final int r = rl*RADIX + result.mant[i];
1830             final int rh = r / divisor;
1831             rl = r - rh * divisor;
1832             result.mant[i] = rh;
1833         }
1834 
1835         if (result.mant[mant.length-1] == 0) {
1836             // normalize
1837             result.shiftLeft();
1838             final int r = rl * RADIX;        // compute the next digit and put it in
1839             final int rh = r / divisor;
1840             rl = r - rh * divisor;
1841             result.mant[0] = rh;
1842         }
1843 
1844         final int excp = result.round(rl * RADIX / divisor);  // do the rounding
1845         if (excp != 0) {
1846             result = dotrap(excp, DIVIDE_TRAP, result, result);
1847         }
1848 
1849         return result;
1850 
1851     }
1852 
1853     /** Compute the square root.
1854      * @return square root of the instance
1855      */
sqrt()1856     public Dfp sqrt() {
1857 
1858         // check for unusual cases
1859         if (nans == FINITE && mant[mant.length-1] == 0) {
1860             // if zero
1861             return newInstance(this);
1862         }
1863 
1864         if (nans != FINITE) {
1865             if (nans == INFINITE && sign == 1) {
1866                 // if positive infinity
1867                 return newInstance(this);
1868             }
1869 
1870             if (nans == QNAN) {
1871                 return newInstance(this);
1872             }
1873 
1874             if (nans == SNAN) {
1875                 Dfp result;
1876 
1877                 field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1878                 result = newInstance(this);
1879                 result = dotrap(DfpField.FLAG_INVALID, SQRT_TRAP, null, result);
1880                 return result;
1881             }
1882         }
1883 
1884         if (sign == -1) {
1885             // if negative
1886             Dfp result;
1887 
1888             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
1889             result = newInstance(this);
1890             result.nans = QNAN;
1891             result = dotrap(DfpField.FLAG_INVALID, SQRT_TRAP, null, result);
1892             return result;
1893         }
1894 
1895         Dfp x = newInstance(this);
1896 
1897         /* Lets make a reasonable guess as to the size of the square root */
1898         if (x.exp < -1 || x.exp > 1) {
1899             x.exp = this.exp / 2;
1900         }
1901 
1902         /* Coarsely estimate the mantissa */
1903         switch (x.mant[mant.length-1] / 2000) {
1904             case 0:
1905                 x.mant[mant.length-1] = x.mant[mant.length-1]/2+1;
1906                 break;
1907             case 2:
1908                 x.mant[mant.length-1] = 1500;
1909                 break;
1910             case 3:
1911                 x.mant[mant.length-1] = 2200;
1912                 break;
1913             default:
1914                 x.mant[mant.length-1] = 3000;
1915         }
1916 
1917         Dfp dx = newInstance(x);
1918 
1919         /* Now that we have the first pass estimate, compute the rest
1920        by the formula dx = (y - x*x) / (2x); */
1921 
1922         Dfp px  = getZero();
1923         Dfp ppx = getZero();
1924         while (x.unequal(px)) {
1925             dx = newInstance(x);
1926             dx.sign = -1;
1927             dx = dx.add(this.divide(x));
1928             dx = dx.divide(2);
1929             ppx = px;
1930             px = x;
1931             x = x.add(dx);
1932 
1933             if (x.equals(ppx)) {
1934                 // alternating between two values
1935                 break;
1936             }
1937 
1938             // if dx is zero, break.  Note testing the most sig digit
1939             // is a sufficient test since dx is normalized
1940             if (dx.mant[mant.length-1] == 0) {
1941                 break;
1942             }
1943         }
1944 
1945         return x;
1946 
1947     }
1948 
1949     /** Get a string representation of the instance.
1950      * @return string representation of the instance
1951      */
1952     @Override
toString()1953     public String toString() {
1954         if (nans != FINITE) {
1955             // if non-finite exceptional cases
1956             if (nans == INFINITE) {
1957                 return (sign < 0) ? NEG_INFINITY_STRING : POS_INFINITY_STRING;
1958             } else {
1959                 return NAN_STRING;
1960             }
1961         }
1962 
1963         if (exp > mant.length || exp < -1) {
1964             return dfp2sci();
1965         }
1966 
1967         return dfp2string();
1968 
1969     }
1970 
1971     /** Convert an instance to a string using scientific notation.
1972      * @return string representation of the instance in scientific notation
1973      */
dfp2sci()1974     protected String dfp2sci() {
1975         char rawdigits[]    = new char[mant.length * 4];
1976         char outputbuffer[] = new char[mant.length * 4 + 20];
1977         int p;
1978         int q;
1979         int e;
1980         int ae;
1981         int shf;
1982 
1983         // Get all the digits
1984         p = 0;
1985         for (int i = mant.length - 1; i >= 0; i--) {
1986             rawdigits[p++] = (char) ((mant[i] / 1000) + '0');
1987             rawdigits[p++] = (char) (((mant[i] / 100) %10) + '0');
1988             rawdigits[p++] = (char) (((mant[i] / 10) % 10) + '0');
1989             rawdigits[p++] = (char) (((mant[i]) % 10) + '0');
1990         }
1991 
1992         // Find the first non-zero one
1993         for (p = 0; p < rawdigits.length; p++) {
1994             if (rawdigits[p] != '0') {
1995                 break;
1996             }
1997         }
1998         shf = p;
1999 
2000         // Now do the conversion
2001         q = 0;
2002         if (sign == -1) {
2003             outputbuffer[q++] = '-';
2004         }
2005 
2006         if (p != rawdigits.length) {
2007             // there are non zero digits...
2008             outputbuffer[q++] = rawdigits[p++];
2009             outputbuffer[q++] = '.';
2010 
2011             while (p<rawdigits.length) {
2012                 outputbuffer[q++] = rawdigits[p++];
2013             }
2014         } else {
2015             outputbuffer[q++] = '0';
2016             outputbuffer[q++] = '.';
2017             outputbuffer[q++] = '0';
2018             outputbuffer[q++] = 'e';
2019             outputbuffer[q++] = '0';
2020             return new String(outputbuffer, 0, 5);
2021         }
2022 
2023         outputbuffer[q++] = 'e';
2024 
2025         // Find the msd of the exponent
2026 
2027         e = exp * 4 - shf - 1;
2028         ae = e;
2029         if (e < 0) {
2030             ae = -e;
2031         }
2032 
2033         // Find the largest p such that p < e
2034         for (p = 1000000000; p > ae; p /= 10) {
2035             // nothing to do
2036         }
2037 
2038         if (e < 0) {
2039             outputbuffer[q++] = '-';
2040         }
2041 
2042         while (p > 0) {
2043             outputbuffer[q++] = (char)(ae / p + '0');
2044             ae = ae % p;
2045             p = p / 10;
2046         }
2047 
2048         return new String(outputbuffer, 0, q);
2049 
2050     }
2051 
2052     /** Convert an instance to a string using normal notation.
2053      * @return string representation of the instance in normal notation
2054      */
dfp2string()2055     protected String dfp2string() {
2056         char buffer[] = new char[mant.length*4 + 20];
2057         int p = 1;
2058         int q;
2059         int e = exp;
2060         boolean pointInserted = false;
2061 
2062         buffer[0] = ' ';
2063 
2064         if (e <= 0) {
2065             buffer[p++] = '0';
2066             buffer[p++] = '.';
2067             pointInserted = true;
2068         }
2069 
2070         while (e < 0) {
2071             buffer[p++] = '0';
2072             buffer[p++] = '0';
2073             buffer[p++] = '0';
2074             buffer[p++] = '0';
2075             e++;
2076         }
2077 
2078         for (int i = mant.length - 1; i >= 0; i--) {
2079             buffer[p++] = (char) ((mant[i] / 1000) + '0');
2080             buffer[p++] = (char) (((mant[i] / 100) % 10) + '0');
2081             buffer[p++] = (char) (((mant[i] / 10) % 10) + '0');
2082             buffer[p++] = (char) (((mant[i]) % 10) + '0');
2083             if (--e == 0) {
2084                 buffer[p++] = '.';
2085                 pointInserted = true;
2086             }
2087         }
2088 
2089         while (e > 0) {
2090             buffer[p++] = '0';
2091             buffer[p++] = '0';
2092             buffer[p++] = '0';
2093             buffer[p++] = '0';
2094             e--;
2095         }
2096 
2097         if (!pointInserted) {
2098             // Ensure we have a radix point!
2099             buffer[p++] = '.';
2100         }
2101 
2102         // Suppress leading zeros
2103         q = 1;
2104         while (buffer[q] == '0') {
2105             q++;
2106         }
2107         if (buffer[q] == '.') {
2108             q--;
2109         }
2110 
2111         // Suppress trailing zeros
2112         while (buffer[p-1] == '0') {
2113             p--;
2114         }
2115 
2116         // Insert sign
2117         if (sign < 0) {
2118             buffer[--q] = '-';
2119         }
2120 
2121         return new String(buffer, q, p - q);
2122 
2123     }
2124 
2125     /** Raises a trap.  This does not set the corresponding flag however.
2126      *  @param type the trap type
2127      *  @param what - name of routine trap occurred in
2128      *  @param oper - input operator to function
2129      *  @param result - the result computed prior to the trap
2130      *  @return The suggested return value from the trap handler
2131      */
dotrap(int type, String what, Dfp oper, Dfp result)2132     public Dfp dotrap(int type, String what, Dfp oper, Dfp result) {
2133         Dfp def = result;
2134 
2135         switch (type) {
2136             case DfpField.FLAG_INVALID:
2137                 def = newInstance(getZero());
2138                 def.sign = result.sign;
2139                 def.nans = QNAN;
2140                 break;
2141 
2142             case DfpField.FLAG_DIV_ZERO:
2143                 if (nans == FINITE && mant[mant.length-1] != 0) {
2144                     // normal case, we are finite, non-zero
2145                     def = newInstance(getZero());
2146                     def.sign = (byte)(sign*oper.sign);
2147                     def.nans = INFINITE;
2148                 }
2149 
2150                 if (nans == FINITE && mant[mant.length-1] == 0) {
2151                     //  0/0
2152                     def = newInstance(getZero());
2153                     def.nans = QNAN;
2154                 }
2155 
2156                 if (nans == INFINITE || nans == QNAN) {
2157                     def = newInstance(getZero());
2158                     def.nans = QNAN;
2159                 }
2160 
2161                 if (nans == INFINITE || nans == SNAN) {
2162                     def = newInstance(getZero());
2163                     def.nans = QNAN;
2164                 }
2165                 break;
2166 
2167             case DfpField.FLAG_UNDERFLOW:
2168                 if ( (result.exp+mant.length) < MIN_EXP) {
2169                     def = newInstance(getZero());
2170                     def.sign = result.sign;
2171                 } else {
2172                     def = newInstance(result);  // gradual underflow
2173                 }
2174                 result.exp = result.exp + ERR_SCALE;
2175                 break;
2176 
2177             case DfpField.FLAG_OVERFLOW:
2178                 result.exp = result.exp - ERR_SCALE;
2179                 def = newInstance(getZero());
2180                 def.sign = result.sign;
2181                 def.nans = INFINITE;
2182                 break;
2183 
2184             default: def = result; break;
2185         }
2186 
2187         return trap(type, what, oper, def, result);
2188 
2189     }
2190 
2191     /** Trap handler.  Subclasses may override this to provide trap
2192      *  functionality per IEEE 854-1987.
2193      *
2194      *  @param type  The exception type - e.g. FLAG_OVERFLOW
2195      *  @param what  The name of the routine we were in e.g. divide()
2196      *  @param oper  An operand to this function if any
2197      *  @param def   The default return value if trap not enabled
2198      *  @param result    The result that is specified to be delivered per
2199      *                   IEEE 854, if any
2200      *  @return the value that should be return by the operation triggering the trap
2201      */
trap(int type, String what, Dfp oper, Dfp def, Dfp result)2202     protected Dfp trap(int type, String what, Dfp oper, Dfp def, Dfp result) {
2203         return def;
2204     }
2205 
2206     /** Returns the type - one of FINITE, INFINITE, SNAN, QNAN.
2207      * @return type of the number
2208      */
classify()2209     public int classify() {
2210         return nans;
2211     }
2212 
2213     /** Creates an instance that is the same as x except that it has the sign of y.
2214      * abs(x) = dfp.copysign(x, dfp.one)
2215      * @param x number to get the value from
2216      * @param y number to get the sign from
2217      * @return a number with the value of x and the sign of y
2218      */
copysign(final Dfp x, final Dfp y)2219     public static Dfp copysign(final Dfp x, final Dfp y) {
2220         Dfp result = x.newInstance(x);
2221         result.sign = y.sign;
2222         return result;
2223     }
2224 
2225     /** Returns the next number greater than this one in the direction of x.
2226      * If this==x then simply returns this.
2227      * @param x direction where to look at
2228      * @return closest number next to instance in the direction of x
2229      */
nextAfter(final Dfp x)2230     public Dfp nextAfter(final Dfp x) {
2231 
2232         // make sure we don't mix number with different precision
2233         if (field.getRadixDigits() != x.field.getRadixDigits()) {
2234             field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
2235             final Dfp result = newInstance(getZero());
2236             result.nans = QNAN;
2237             return dotrap(DfpField.FLAG_INVALID, NEXT_AFTER_TRAP, x, result);
2238         }
2239 
2240         // if this is greater than x
2241         boolean up = false;
2242         if (this.lessThan(x)) {
2243             up = true;
2244         }
2245 
2246         if (compare(this, x) == 0) {
2247             return newInstance(x);
2248         }
2249 
2250         if (lessThan(getZero())) {
2251             up = !up;
2252         }
2253 
2254         final Dfp inc;
2255         Dfp result;
2256         if (up) {
2257             inc = newInstance(getOne());
2258             inc.exp = this.exp-mant.length+1;
2259             inc.sign = this.sign;
2260 
2261             if (this.equals(getZero())) {
2262                 inc.exp = MIN_EXP-mant.length;
2263             }
2264 
2265             result = add(inc);
2266         } else {
2267             inc = newInstance(getOne());
2268             inc.exp = this.exp;
2269             inc.sign = this.sign;
2270 
2271             if (this.equals(inc)) {
2272                 inc.exp = this.exp-mant.length;
2273             } else {
2274                 inc.exp = this.exp-mant.length+1;
2275             }
2276 
2277             if (this.equals(getZero())) {
2278                 inc.exp = MIN_EXP-mant.length;
2279             }
2280 
2281             result = this.subtract(inc);
2282         }
2283 
2284         if (result.classify() == INFINITE && this.classify() != INFINITE) {
2285             field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
2286             result = dotrap(DfpField.FLAG_INEXACT, NEXT_AFTER_TRAP, x, result);
2287         }
2288 
2289         if (result.equals(getZero()) && this.equals(getZero()) == false) {
2290             field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
2291             result = dotrap(DfpField.FLAG_INEXACT, NEXT_AFTER_TRAP, x, result);
2292         }
2293 
2294         return result;
2295 
2296     }
2297 
2298     /** Convert the instance into a double.
2299      * @return a double approximating the instance
2300      * @see #toSplitDouble()
2301      */
toDouble()2302     public double toDouble() {
2303 
2304         if (isInfinite()) {
2305             if (lessThan(getZero())) {
2306                 return Double.NEGATIVE_INFINITY;
2307             } else {
2308                 return Double.POSITIVE_INFINITY;
2309             }
2310         }
2311 
2312         if (isNaN()) {
2313             return Double.NaN;
2314         }
2315 
2316         Dfp y = this;
2317         boolean negate = false;
2318         if (lessThan(getZero())) {
2319             y = negate();
2320             negate = true;
2321         }
2322 
2323         /* Find the exponent, first estimate by integer log10, then adjust.
2324          Should be faster than doing a natural logarithm.  */
2325         int exponent = (int)(y.log10() * 3.32);
2326         if (exponent < 0) {
2327             exponent--;
2328         }
2329 
2330         Dfp tempDfp = DfpMath.pow(getTwo(), exponent);
2331         while (tempDfp.lessThan(y) || tempDfp.equals(y)) {
2332             tempDfp = tempDfp.multiply(2);
2333             exponent++;
2334         }
2335         exponent--;
2336 
2337         /* We have the exponent, now work on the mantissa */
2338 
2339         y = y.divide(DfpMath.pow(getTwo(), exponent));
2340         if (exponent > -1023) {
2341             y = y.subtract(getOne());
2342         }
2343 
2344         if (exponent < -1074) {
2345             return 0;
2346         }
2347 
2348         if (exponent > 1023) {
2349             return negate ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
2350         }
2351 
2352 
2353         y = y.multiply(newInstance(4503599627370496l)).rint();
2354         String str = y.toString();
2355         str = str.substring(0, str.length()-1);
2356         long mantissa = Long.parseLong(str);
2357 
2358         if (mantissa == 4503599627370496L) {
2359             // Handle special case where we round up to next power of two
2360             mantissa = 0;
2361             exponent++;
2362         }
2363 
2364         /* Its going to be subnormal, so make adjustments */
2365         if (exponent <= -1023) {
2366             exponent--;
2367         }
2368 
2369         while (exponent < -1023) {
2370             exponent++;
2371             mantissa >>>= 1;
2372         }
2373 
2374         long bits = mantissa | ((exponent + 1023L) << 52);
2375         double x = Double.longBitsToDouble(bits);
2376 
2377         if (negate) {
2378             x = -x;
2379         }
2380 
2381         return x;
2382 
2383     }
2384 
2385     /** Convert the instance into a split double.
2386      * @return an array of two doubles which sum represent the instance
2387      * @see #toDouble()
2388      */
toSplitDouble()2389     public double[] toSplitDouble() {
2390         double split[] = new double[2];
2391         long mask = 0xffffffffc0000000L;
2392 
2393         split[0] = Double.longBitsToDouble(Double.doubleToLongBits(toDouble()) & mask);
2394         split[1] = subtract(newInstance(split[0])).toDouble();
2395 
2396         return split;
2397     }
2398 
2399 }
2400