/external/tensorflow/tensorflow/examples/speech_commands/ |
D | train_test.py | 26 from tensorflow.examples.speech_commands import train 108 train.FLAGS = self._getDefaultFlags() 109 train.main('') 112 os.path.join(train.FLAGS.train_dir, 113 train.FLAGS.model_architecture + '.pbtxt'))) 116 os.path.join(train.FLAGS.train_dir, 117 train.FLAGS.model_architecture + '_labels.txt'))) 120 os.path.join(train.FLAGS.train_dir, 121 train.FLAGS.model_architecture + '.ckpt-1.meta'))) 125 train.FLAGS = self._getDefaultFlags() [all …]
|
/external/skqp/infra/bots/ |
D | infra_tests.py | 28 def python_unit_tests(train): argument 29 if train: 36 def recipe_test(train): argument 39 if train: 46 def gen_tasks_test(train): argument 48 if not train: 64 train = False 66 train = True 75 err = t(train) 87 if train:
|
/external/skia/infra/bots/ |
D | infra_tests.py | 28 def python_unit_tests(train): argument 29 if train: 36 def recipe_test(train): argument 39 if train: 46 def gen_tasks_test(train): argument 48 if not train: 64 train = False 66 train = True 75 err = t(train) 87 if train:
|
/external/tensorflow/tensorflow/contrib/gan/python/ |
D | train_test.py | 27 from tensorflow.contrib.gan.python import train 172 return train.gan_model( 180 return train.gan_model( 204 return train.infogan_model( 213 return train.infogan_model( 238 return train.acgan_model( 247 return train.acgan_model( 272 return train.cyclegan_model( 280 return train.cyclegan_model( 319 return train.stargan_model( [all …]
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | optimizers_test.py | 71 train = optimizers_lib.optimize_loss( 74 session.run(train, feed_dict={x: 5}) 87 train = optimizers_lib.optimize_loss( 90 session.run(train, feed_dict={x: 5}) 170 train = optimizers_lib.optimize_loss( 177 session.run(train, feed_dict={x: 5}) 187 train = optimizers_lib.optimize_loss( 195 session.run(train, feed_dict={x: 5}) 203 train = optimizers_lib.optimize_loss( 210 session.run(train, feed_dict={x: 5}) [all …]
|
D | optimizers.py | 37 from tensorflow.python.training import training as train unknown 40 "Adagrad": train.AdagradOptimizer, 41 "Adam": train.AdamOptimizer, 42 "Ftrl": train.FtrlOptimizer, 43 …"Momentum": lambda learning_rate: train.MomentumOptimizer(learning_rate, momentum=0.9), # pylint:… 44 "RMSProp": train.RMSPropOptimizer, 45 "SGD": train.GradientDescentOptimizer, 159 global_step = train.get_global_step() 161 train.assert_global_step(global_step)
|
/external/tensorflow/tensorflow/core/kernels/ |
D | training_ops_test.cc | 82 Graph* train; in BM_SGD() local 83 SGD(params, &init, &train); in BM_SGD() 84 test::Benchmark("cpu", train, GetOptions(), init).Run(iters); in BM_SGD() 114 Graph* train; in BM_Adagrad() local 115 Adagrad(params, &init, &train); in BM_Adagrad() 116 test::Benchmark("cpu", train, GetOptions(), init).Run(iters); in BM_Adagrad() 148 Graph* train; in BM_Momentum() local 149 Momentum(params, &init, &train); in BM_Momentum() 150 test::Benchmark("cpu", train, GetOptions(), init).Run(iters); in BM_Momentum() 191 Graph* train; in BM_Adam() local [all …]
|
D | sdca_ops_test.cc | 233 Graph* train = nullptr; in BM_SDCA() local 236 20 /* dense features per group */, &init, &train); in BM_SDCA() 238 test::Benchmark("cpu", train, GetSingleThreadedOptions(), init).Run(iters); in BM_SDCA() 244 Graph* train = nullptr; in BM_SDCA_LARGE_DENSE() local 247 200000 /* dense features per group */, &init, &train); in BM_SDCA_LARGE_DENSE() 249 test::Benchmark("cpu", train, GetSingleThreadedOptions(), init).Run(iters); in BM_SDCA_LARGE_DENSE() 255 Graph* train = nullptr; in BM_SDCA_LARGE_SPARSE() local 258 0 /* dense features per group */, &init, &train); in BM_SDCA_LARGE_SPARSE() 260 test::Benchmark("cpu", train, GetMultiThreadedOptions(), init).Run(iters); in BM_SDCA_LARGE_SPARSE()
|
/external/tensorflow/tensorflow/examples/how_tos/reading_data/ |
D | convert_to_records.py | 33 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) 37 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) 58 example = tf.train.Example( 59 features=tf.train.Features( 78 convert_to(data_sets.train, 'train')
|
/external/tensorflow/tensorflow/examples/get_started/regression/ |
D | custom_regression.py | 60 optimizer = params.get("optimizer", tf.train.AdamOptimizer) 63 loss=average_loss, global_step=tf.train.get_global_step()) 87 (train, test) = imports85.dataset() 93 train = train.map(normalize_price) 101 train.shuffle(1000).batch(128) 141 "optimizer": tf.train.AdamOptimizer, 146 model.train(input_fn=input_train, steps=STEPS)
|
D | linear_regression_categorical.py | 32 (train, test) = imports85.dataset() 38 train = train.map(normalize_price) 46 train.shuffle(1000).batch(128) 90 model.train(input_fn=input_train, steps=STEPS)
|
D | dnn_regression.py | 32 (train, test) = imports85.dataset() 38 train = train.map(normalize_price) 46 train.shuffle(1000).batch(128) 85 model.train(input_fn=input_train, steps=STEPS)
|
/external/tensorflow/tensorflow/contrib/model_pruning/examples/cifar10/ |
D | cifar10_train.py | 55 def train(): function 72 train_op = cifar10.train(loss, global_step) 90 class _LoggerHook(tf.train.SessionRunHook): 99 return tf.train.SessionRunArgs(loss) # Asks for loss value. 114 with tf.train.MonitoredTrainingSession( 116 hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), 117 tf.train.NanTensorHook(loss), 132 train()
|
/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/serialization/ |
D | checkpoint_input_pipeline_hook_test.py | 79 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 81 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 93 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 95 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 105 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 107 est.train(_input_fn, steps=2, hooks=[self._build_iterator_saver_hook(est)]) 110 est.train(_input_fn, steps=2) 121 est.train(
|
/external/tensorflow/tensorflow/examples/tutorials/layers/ |
D | cnn_mnist.py | 104 optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) 107 global_step=tf.train.get_global_step()) 121 train_data = mnist.train.images # Returns np.array 122 train_labels = np.asarray(mnist.train.labels, dtype=np.int32) 133 logging_hook = tf.train.LoggingTensorHook( 143 mnist_classifier.train(
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
D | cifar_tfrecords.py | 56 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) 60 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) 116 example = tf.train.Example( 117 features=tf.train.Features(
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/linear_regression/ |
D | linear_regression_graph_test.py | 53 optimization_step = tf.train.GradientDescentOptimizer( 59 def train(num_epochs): function 69 train(1) 72 train(num_epochs)
|
/external/tensorflow/tensorflow/contrib/tpu/ |
D | tpu_estimator.md | 4 This document describes how to train a TensorFlow model on TPUs using the 19 * `Estimator.train()` - train a model on a given input for a fixed number of 58 learning_rate = tf.train.exponential_decay( 59 FLAGS.learning_rate, tf.train.get_global_step(), 100000, 0.96) 62 tf.train.GradientDescentOptimizer(learning_rate=learning_rate)) 64 train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) 69 """Returns an `input_fn` for train and eval.""" 116 estimator.train(input_fn=get_input_fn(FLAGS.train_file), 189 tf.train.GradientDescentOptimizer(learning_rate=learning_rate)) 207 1. In order to amortize the TPU launch cost, the model train step is wrapped in [all …]
|
/external/tensorflow/tensorflow/contrib/factorization/python/ops/ |
D | kmeans_test.py | 163 kmeans.train(input_fn=self.input_fn(), steps=1) 169 kmeans.train(input_fn=self.input_fn(), steps=1) 172 kmeans.train(input_fn=self.input_fn(), steps=steps) 191 kmeans.train( 223 kmeans.train(input_fn=self.input_fn(), max_steps=max_steps) 282 kmeans.train( 298 kmeans.train( 316 kmeans.train( 380 self.kmeans.train(input_fn=self.input_fn(), max_steps=max_steps) 387 self.kmeans.train(input_fn=self.input_fn(), steps=10) [all …]
|
/external/tensorflow/tensorflow/contrib/gan/ |
D | __init__.py | 33 from tensorflow.contrib.gan.python import train 37 from tensorflow.contrib.gan.python.train import * 48 _allowed_symbols += train.__all__
|
/external/tensorflow/tensorflow/contrib/slim/python/slim/ |
D | learning_test.py | 256 loss = learning.train( 443 loss = learning.train( 462 loss = learning.train( 482 loss = learning.train( 517 loss = learning.train( 543 loss = learning.train( 571 learning.train( 589 learning.train( 608 learning.train( 628 learning.train(train_op, logdir, init_op=None, number_of_steps=300) [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | batch_norm_benchmark.py | 68 def build_graph(device, input_shape, axes, num_layers, mode, scale, train): argument 98 if train: 111 if train: 127 train, num_iters): argument 146 train) 155 (device, len(input_shape), len(axes), num_layers, mode, scale, train, 169 train=train,
|
/external/tensorflow/tensorflow/contrib/autograph/examples/benchmarks/ |
D | cartpole_benchmark.py | 105 def train(self, cart_pole_env, optimizer, discount_rate, num_games, member in GraphPolicyNetwork 178 zip(grad_list, var_list), global_step=tf.train.get_global_step()) 191 steps_per_game = policy_network.train( 313 def train(self, cart_pole_env, optimizer, discount_rate, num_games, member in EagerPolicyNetwork 360 zip(grad_list, var_list), global_step=tf.train.get_global_step()) 370 steps_per_game = policy_network.train( 427 opt = tf.train.AdamOptimizer(0.05) 444 opt = tf.train.AdamOptimizer(0.05) 471 opt = tf.train.AdamOptimizer(0.05) 485 opt = tf.train.AdamOptimizer(0.05)
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | mnist_with_summaries.py | 38 def train(): function 128 train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize( 149 def feed_dict(train): argument 151 if train or FLAGS.fake_data: 152 xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data) 187 train()
|
/external/tensorflow/tensorflow/examples/learn/ |
D | iris_custom_decay_dnn.py | 54 global_step = tf.train.get_global_step() 55 learning_rate = tf.train.exponential_decay( 58 optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) 81 classifier.train(input_fn=train_input_fn, steps=1000)
|