/external/tensorflow/tensorflow/python/grappler/ |
D | layout_optimizer_test.py | 53 return random_ops.truncated_normal(shape, seed=0, stddev=0.1) 88 x = random_ops.truncated_normal([2, 5, 5, 4], seed=0) 118 x1 = random_ops.truncated_normal([1, 784], seed=0) 119 x2 = random_ops.truncated_normal([1, 784], seed=0) 120 x3 = random_ops.truncated_normal([1, 784], seed=0) 121 x4 = random_ops.truncated_normal([1, 784], seed=0) 129 x1 = random_ops.truncated_normal([1, 784], seed=0) 130 x2 = random_ops.truncated_normal([1, 784], seed=0) 131 x3 = random_ops.truncated_normal([1, 784], seed=0) 132 x4 = random_ops.truncated_normal([1, 784], seed=0) [all …]
|
D | cost_analyzer_test.py | 91 random_ops.truncated_normal([5, 5, 1, 32], stddev=0.1)) 92 b = variables.Variable(random_ops.truncated_normal([32], stddev=0.1)) 98 random_ops.truncated_normal([25088, 10], stddev=0.1)) 99 b_fc = variables.Variable(random_ops.truncated_normal([10], stddev=0.1))
|
/external/tensorflow/tensorflow/contrib/fused_conv/python/ops/ |
D | fused_conv2d_bias_activation_benchmark.py | 56 inp = variables.Variable(random_ops.truncated_normal(input_shape)) 57 filt = variables.Variable(random_ops.truncated_normal(filter_shape)) 59 bias = variables.Variable(random_ops.truncated_normal(bias_shape)) 101 inp = variables.Variable(random_ops.truncated_normal(input_shape)) 102 filt = variables.Variable(random_ops.truncated_normal(filter_shape)) 104 bias = variables.Variable(random_ops.truncated_normal(bias_shape))
|
/external/tensorflow/tensorflow/examples/tutorials/mnist/ |
D | mnist.py | 59 tf.truncated_normal([IMAGE_PIXELS, hidden1_units], 68 tf.truncated_normal([hidden1_units, hidden2_units], 77 tf.truncated_normal([hidden2_units, NUM_CLASSES],
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | stateless_random_ops.cc | 222 xla::XlaOp truncated_normal = TruncatedNormal(uniform); in Compile() local 223 truncated_normal = MaybeConvertF32ToBF16(truncated_normal, dtype_); in Compile() 224 ctx->SetOutput(0, truncated_normal); in Compile()
|
/external/tensorflow/tensorflow/python/kernel_tests/random/ |
D | random_ops_test.py | 166 rng = random_ops.truncated_normal( 236 n = random_ops.truncated_normal(v.shape) 243 rnd1 = random_ops.truncated_normal(shape, 0.0, 1.0, dtypes.float32) 244 rnd2 = random_ops.truncated_normal(shape, 0.0, 1.0, dtypes.float32) 421 rnd1 = random_ops.truncated_normal([1, 2, 3]) 424 rnd2 = random_ops.truncated_normal( 428 rnd3 = random_ops.truncated_normal(array_ops.placeholder(dtypes.int32))
|
D | stateless_random_ops_test.py | 95 (stateless.stateless_truncated_normal, random_ops.truncated_normal, {}), 96 (stateless.stateless_truncated_normal, random_ops.truncated_normal,
|
/external/tensorflow/tensorflow/python/ops/ |
D | init_ops_v2.py | 342 return self._random_generator.truncated_normal(shape, self.mean, 428 return self._random_generator.truncated_normal(shape, 0.0, stddev, dtype) 799 def truncated_normal(self, shape, mean, stddev, dtype): member in _RandomGenerator 804 op = random_ops.truncated_normal 816 truncated_normal = TruncatedNormal variable
|
D | conv2d_benchmark.py | 67 random_ops.truncated_normal(input_shape, dtype=dtype)) 69 random_ops.truncated_normal(filter_shape, dtype=dtype))
|
D | initializers_ns.py | 30 truncated_normal = init_ops.truncated_normal_initializer variable
|
D | random_ops.py | 144 def truncated_normal(shape, function 177 rnd = gen_random_ops.truncated_normal(
|
/external/tensorflow/tensorflow/contrib/factorization/examples/ |
D | mnist.py | 156 tf.truncated_normal([num_clusters, hidden1_units], 165 tf.truncated_normal([hidden1_units, hidden2_units], 174 tf.truncated_normal([hidden2_units, NUM_CLASSES],
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | random_ops_test.py | 93 return random_ops.truncated_normal(shape=[2], dtype=dtype) 104 x = random_ops.truncated_normal(shape=[count], dtype=dtype)
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.variance_scaling_initializer.pbtxt | 8 …e\'], varargs=None, keywords=None, defaults=[\'1.0\', \'fan_in\', \'truncated_normal\', \'None\', …
|
D | tensorflow.initializers.truncated_normal.pbtxt | 1 path: "tensorflow.initializers.truncated_normal"
|
D | tensorflow.keras.initializers.-variance-scaling.pbtxt | 8 …e\'], varargs=None, keywords=None, defaults=[\'1.0\', \'fan_in\', \'truncated_normal\', \'None\', …
|
D | tensorflow.initializers.variance_scaling.pbtxt | 8 …e\'], varargs=None, keywords=None, defaults=[\'1.0\', \'fan_in\', \'truncated_normal\', \'None\', …
|
D | tensorflow.keras.initializers.truncated_normal.pbtxt | 1 path: "tensorflow.keras.initializers.truncated_normal"
|
D | tensorflow.initializers.pbtxt | 36 name: "truncated_normal"
|
/external/tensorflow/tensorflow/tools/api/golden/v2/ |
D | tensorflow.keras.initializers.-variance-scaling.pbtxt | 8 …d\'], varargs=None, keywords=None, defaults=[\'1.0\', \'fan_in\', \'truncated_normal\', \'None\'],…
|
D | tensorflow.initializers.-variance-scaling.pbtxt | 8 …d\'], varargs=None, keywords=None, defaults=[\'1.0\', \'fan_in\', \'truncated_normal\', \'None\'],…
|
/external/tensorflow/tensorflow/examples/udacity/ |
D | 4_convolutions.ipynb | 262 " layer1_weights = tf.Variable(tf.truncated_normal(\n", 265 " layer2_weights = tf.Variable(tf.truncated_normal(\n", 268 " layer3_weights = tf.Variable(tf.truncated_normal(\n", 271 " layer4_weights = tf.Variable(tf.truncated_normal(\n",
|
D | 6_lstm.ipynb | 522 " ix = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1))\n", 523 " im = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1))\n", 526 " fx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1))\n", 527 " fm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1))\n", 530 " cx = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1))\n", 531 " cm = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1))\n", 534 " ox = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes], -0.1, 0.1))\n", 535 " om = tf.Variable(tf.truncated_normal([num_nodes, num_nodes], -0.1, 0.1))\n", 541 " w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size], -0.1, 0.1))\n",
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | initializers.py | 149 return random_ops.truncated_normal(shape, 0.0, trunc_stddev, dtype,
|
/external/tensorflow/tensorflow/contrib/gan/python/estimator/python/ |
D | latent_gan_estimator_impl.py | 104 name=INPUT_NAME, initializer=random_ops.truncated_normal(z_shape),
|