/external/tensorflow/tensorflow/python/ops/ |
D | state_ops.py | 137 def assign_sub(ref, value, use_locking=None, name=None): argument 161 ref, value, use_locking=use_locking, name=name) 166 def assign_add(ref, value, use_locking=None, name=None): argument 190 ref, value, use_locking=use_locking, name=name) 195 def assign(ref, value, validate_shape=None, use_locking=None, name=None): argument 222 ref, value, use_locking=use_locking, name=name, 252 def scatter_update(ref, indices, updates, use_locking=True, name=None): argument 299 use_locking=use_locking, name=name) 306 def scatter_nd_update(ref, indices, updates, use_locking=True, name=None): argument 361 ref, indices, updates, use_locking, name) [all …]
|
D | variables.py | 542 def assign(self, value, use_locking=False, name=None, read_value=True): argument 560 def assign_add(self, delta, use_locking=False, name=None, read_value=True): argument 578 def assign_sub(self, delta, use_locking=False, name=None, read_value=True): argument 596 def scatter_sub(self, sparse_delta, use_locking=False, name=None): argument 613 def scatter_add(self, sparse_delta, use_locking=False, name=None): argument 630 def scatter_update(self, sparse_delta, use_locking=False, name=None): argument 647 def batch_scatter_update(self, sparse_delta, use_locking=False, name=None): argument 1770 def assign(self, value, use_locking=False, name=None, read_value=True): argument 1786 assign = state_ops.assign(self._variable, value, use_locking=use_locking, 1792 def assign_add(self, delta, use_locking=False, name=None, read_value=True): argument [all …]
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/experimental/ |
D | autocast_variable.py | 116 def assign(self, value, use_locking=None, name=None, read_value=True): argument 118 value, use_locking=use_locking, name=name, read_value=read_value) 120 def assign_add(self, delta, use_locking=None, name=None, read_value=True): argument 122 delta, use_locking=use_locking, name=name, read_value=read_value) 124 def assign_sub(self, delta, use_locking=None, name=None, read_value=True): argument 126 delta, use_locking=use_locking, name=name, read_value=read_value)
|
/external/tensorflow/tensorflow/contrib/opt/python/training/ |
D | reg_adagrad_optimizer.py | 49 use_locking=False, argument 54 use_locking=use_locking, 74 use_locking=self._use_locking, 84 use_locking=self._use_locking, 95 use_locking=self._use_locking, 106 use_locking=self._use_locking,
|
D | weight_decay_optimizers.py | 305 use_locking=False, name="MomentumW", use_nesterov=False): argument 333 use_locking=use_locking, name=name, use_nesterov=use_nesterov) 360 epsilon=1e-8, use_locking=False, name="AdamW"): argument 381 epsilon=epsilon, use_locking=use_locking, name=name) 406 use_locking=False, argument 451 use_locking=use_locking,
|
D | adam_gs_optimizer.py | 46 use_locking=False, argument 105 super(AdamGSOptimizer, self).__init__(use_locking, name) 160 use_locking=self._use_locking).op 177 use_locking=self._use_locking) 191 m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) 197 v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking) 202 var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) 214 use_locking=self._use_locking))
|
D | adamax.py | 41 use_locking=False, name="AdaMax"): argument 87 epsilon, use_locking, name) 122 grad, use_locking=self._use_locking).op 135 grad, use_locking=self._use_locking) 168 x, i, v, use_locking=self._use_locking), 170 x, i, v, use_locking=self._use_locking)) 189 beta1_power * self._beta1_t, use_locking=self._use_locking)
|
/external/tensorflow/tensorflow/contrib/optimizer_v2/ |
D | rmsprop.py | 63 use_locking=False, argument 100 super(RMSPropOptimizer, self).__init__(use_locking, name) 135 use_locking=self._use_locking).op 146 use_locking=self._use_locking).op 163 use_locking=self._use_locking) 174 use_locking=self._use_locking) 192 use_locking=self._use_locking) 204 use_locking=self._use_locking) 222 use_locking=self._use_locking) 234 use_locking=self._use_locking)
|
D | adam.py | 38 use_locking=False, name="Adam"): argument 90 super(AdamOptimizer, self).__init__(use_locking, name) 130 use_locking=self._use_locking).op 147 use_locking=self._use_locking) 161 m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) 167 v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking) 172 var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) 179 x, i, v, use_locking=self._use_locking), 195 beta1_power * state.get_hyper("beta1"), use_locking=self._use_locking) 197 beta2_power * state.get_hyper("beta2"), use_locking=self._use_locking)
|
D | momentum.py | 43 use_locking=False, name="Momentum", use_nesterov=False): argument 71 super(MomentumOptimizer, self).__init__(use_locking, name) 88 use_locking=self._use_locking, 99 use_locking=self._use_locking, 111 use_locking=self._use_locking, 123 use_locking=self._use_locking,
|
D | adagrad.py | 38 use_locking=False, name="Adagrad"): argument 60 super(AdagradOptimizer, self).__init__(use_locking, name) 90 use_locking=self._use_locking) 99 use_locking=self._use_locking) 109 use_locking=self._use_locking) 119 use_locking=self._use_locking)
|
D | adadelta.py | 33 use_locking=False, name="Adadelta"): argument 51 super(AdadeltaOptimizer, self).__init__(use_locking, name) 72 use_locking=self._use_locking) 85 use_locking=self._use_locking) 99 use_locking=self._use_locking) 113 use_locking=self._use_locking)
|
D | gradient_descent.py | 30 def __init__(self, learning_rate, use_locking=False, name="GradientDescent"): argument 44 super(GradientDescentOptimizer, self).__init__(use_locking, name) 52 use_locking=self._use_locking).op 57 handle.handle, lr, grad, use_locking=self._use_locking) 69 return var.scatter_sub(delta, use_locking=self._use_locking)
|
/external/tensorflow/tensorflow/python/training/ |
D | proximal_gradient_descent.py | 39 l2_regularization_strength=0.0, use_locking=False, argument 54 super(ProximalGradientDescentOptimizer, self).__init__(use_locking, name) 68 use_locking=self._use_locking).op 77 use_locking=self._use_locking) 87 use_locking=self._use_locking).op 97 use_locking=self._use_locking)
|
D | rmsprop.py | 66 use_locking=False, argument 103 super(RMSPropOptimizer, self).__init__(use_locking, name) 155 use_locking=self._use_locking).op 166 use_locking=self._use_locking).op 183 use_locking=self._use_locking) 194 use_locking=self._use_locking) 212 use_locking=self._use_locking) 224 use_locking=self._use_locking) 242 use_locking=self._use_locking) 254 use_locking=self._use_locking)
|
D | ftrl.py | 45 use_locking=False, argument 88 super(FtrlOptimizer, self).__init__(use_locking, name) 162 use_locking=self._use_locking) 177 use_locking=self._use_locking) 194 use_locking=self._use_locking) 209 use_locking=self._use_locking) 227 use_locking=self._use_locking) 243 use_locking=self._use_locking) 259 use_locking=self._use_locking) 273 use_locking=self._use_locking)
|
D | adam.py | 44 use_locking=False, argument 97 super(AdamOptimizer, self).__init__(use_locking, name) 160 use_locking=self._use_locking).op 177 use_locking=self._use_locking) 191 m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) 197 v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking) 202 var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) 214 use_locking=self._use_locking)) 231 beta1_power * self._beta1_t, use_locking=self._use_locking) 233 beta2_power * self._beta2_t, use_locking=self._use_locking)
|
D | proximal_adagrad.py | 39 use_locking=False, name="ProximalAdagrad"): argument 60 super(ProximalAdagradOptimizer, self).__init__(use_locking, name) 94 grad, use_locking=self._use_locking) 102 grad, use_locking=self._use_locking) 111 use_locking=self._use_locking) 121 use_locking=self._use_locking)
|
D | gradient_descent.py | 34 def __init__(self, learning_rate, use_locking=False, name="GradientDescent"): argument 51 super(GradientDescentOptimizer, self).__init__(use_locking, name) 60 use_locking=self._use_locking).op 66 grad, use_locking=self._use_locking) 77 return var.scatter_sub(delta, use_locking=self._use_locking)
|
D | momentum.py | 47 use_locking=False, name="Momentum", use_nesterov=False): argument 75 super(MomentumOptimizer, self).__init__(use_locking, name) 102 use_locking=self._use_locking, 112 use_locking=self._use_locking, 122 use_locking=self._use_locking, 132 use_locking=self._use_locking,
|
D | adagrad.py | 41 use_locking=False, name="Adagrad"): argument 65 super(AdagradOptimizer, self).__init__(use_locking, name) 103 use_locking=self._use_locking) 112 use_locking=self._use_locking) 122 use_locking=self._use_locking) 132 use_locking=self._use_locking)
|
D | adadelta.py | 37 use_locking=False, name="Adadelta"): argument 57 super(AdadeltaOptimizer, self).__init__(use_locking, name) 92 use_locking=self._use_locking) 105 use_locking=self._use_locking) 119 use_locking=self._use_locking) 133 use_locking=self._use_locking)
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | rmsprop.py | 154 use_locking=self._use_locking) 165 use_locking=self._use_locking) 168 rms_t = state_ops.assign(rms, rms_t, use_locking=self._use_locking) 173 mg_t = state_ops.assign(mg, mg_t, use_locking=self._use_locking) 176 return state_ops.assign(var, var_t, use_locking=self._use_locking).op 200 use_locking=self._use_locking) 212 use_locking=self._use_locking) 215 rms_t = state_ops.assign(rms, rms * rho, use_locking=self._use_locking) 223 mg_t = state_ops.assign(mg, mg * rho, use_locking=self._use_locking)
|
D | adam.py | 187 use_locking=self._use_locking) 202 use_locking=self._use_locking) 218 m_t = state_ops.assign(m, m * beta_1_t, use_locking=self._use_locking) 225 v_t = state_ops.assign(v, v * beta_2_t, use_locking=self._use_locking) 232 var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) 239 v_hat, v_hat_t, use_locking=self._use_locking) 244 use_locking=self._use_locking)
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.-variable.pbtxt | 57 …argspec: "args=[\'self\', \'value\', \'use_locking\', \'name\', \'read_value\'], varargs=None, key… 61 …argspec: "args=[\'self\', \'delta\', \'use_locking\', \'name\', \'read_value\'], varargs=None, key… 65 …argspec: "args=[\'self\', \'delta\', \'use_locking\', \'name\', \'read_value\'], varargs=None, key… 69 …argspec: "args=[\'self\', \'sparse_delta\', \'use_locking\', \'name\'], varargs=None, keywords=Non… 101 …argspec: "args=[\'self\', \'sparse_delta\', \'use_locking\', \'name\'], varargs=None, keywords=Non… 117 …argspec: "args=[\'self\', \'sparse_delta\', \'use_locking\', \'name\'], varargs=None, keywords=Non… 121 …argspec: "args=[\'self\', \'sparse_delta\', \'use_locking\', \'name\'], varargs=None, keywords=Non…
|