Home
last modified time | relevance | path

Searched refs:variance (Results 1 – 25 of 246) sorted by relevance

12345678910

/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/moment/
DStandardDeviation.java48 private Variance variance = null; field in StandardDeviation
55 variance = new Variance(); in StandardDeviation()
64 variance = new Variance(m2); in StandardDeviation()
88 variance = new Variance(isBiasCorrected); in StandardDeviation()
103 variance = new Variance(isBiasCorrected, m2); in StandardDeviation()
111 variance.increment(d); in increment()
118 return variance.getN(); in getN()
126 return FastMath.sqrt(variance.getResult()); in getResult()
134 variance.clear(); in clear()
153 return FastMath.sqrt(variance.evaluate(values)); in evaluate()
[all …]
DKurtosis.java111 double variance = moment.m2 / (moment.n - 1); in getResult() local
112 if (moment.n <= 3 || variance < 10E-20) { in getResult()
119 ((n - 1) * (n -2) * (n -3) * variance * variance); in getResult()
171 Variance variance = new Variance(); in evaluate() local
172 variance.incrementAll(values, begin, length); in evaluate()
173 double mean = variance.moment.m1; in evaluate()
174 double stdDev = FastMath.sqrt(variance.getResult()); in evaluate()
DSkewness.java107 double variance = moment.m2 / (moment.n - 1); in getResult() local
108 if (variance < 10E-20) { in getResult()
113 ((n0 - 1) * (n0 -2) * FastMath.sqrt(variance) * variance); in getResult()
172 final double variance = (accum - (accum2 * accum2 / length)) / (length - 1); in evaluate() local
179 accum3 /= variance * FastMath.sqrt(variance); in evaluate()
/external/tensorflow/tensorflow/contrib/layers/python/layers/
Dinitializers_test.py43 def _test_xavier(self, initializer, shape, variance, uniform): argument
53 self.assertAllClose(np.var(values), variance, 1e-3, 1e-3)
86 def _test_variance(self, initializer, shape, variance, factor, mode, uniform): argument
97 self.assertAllClose(np.var(values), variance, 1e-3, 1e-3)
104 variance=2. / 100.,
114 variance=2. / 40.,
124 variance=4. / (100. + 40.),
134 variance=2. / (100. * 40. * 5.),
144 variance=2. / (100. * 40. * 7.),
154 variance=2. / (100. * 40. * (5. + 7.)),
[all …]
/external/guava/guava-tests/benchmark/com/google/common/math/
DStatsBenchmark.java75 private final double variance; field in StatsBenchmark.MeanAndVariance
77 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument
79 this.variance = variance; in MeanAndVariance()
84 return Doubles.hashCode(mean) * 31 + Doubles.hashCode(variance); in hashCode()
91 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method
97 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method
109 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method
126 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method
141 abstract MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm); in variance() method in StatsBenchmark.VarianceAlgorithm
168 tmp += varianceAlgorithm.variance(values[i & 0xFF], meanAlgorithm).hashCode(); in meanAndVariance()
/external/webrtc/webrtc/modules/audio_processing/intelligibility/
Dintelligibility_utils_unittest.cc87 EXPECT_EQ(0, variance_array.variance()[0]); in TEST()
90 EXPECT_EQ(0, variance_array.variance()[0]); in TEST()
100 EXPECT_GE(variance_array.variance()[j], 0.0f); in TEST()
101 EXPECT_LE(variance_array.variance()[j], 1.0f); in TEST()
105 EXPECT_EQ(0, variance_array.variance()[0]); in TEST()
141 EXPECT_EQ(0, variance_array.variance()[j]); in TEST()
143 EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j], in TEST()
146 EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j], in TEST()
149 EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j], in TEST()
152 EXPECT_EQ(0, variance_array.variance()[j]); in TEST()
/external/tensorflow/tensorflow/core/kernels/
Dfused_batch_norm_op.cu.cc38 const T* variance, double epsilon, in operator ()() argument
43 variance, epsilon, inv_variance); in operator ()()
48 int sample_size, T* variance) { in InvVarianceToVarianceKernel() argument
50 T inv_var = variance[index]; in InvVarianceToVarianceKernel()
54 variance[index] = (var > 0) ? var : 0; in InvVarianceToVarianceKernel()
61 int channels, T* variance) { in operator ()() argument
65 epsilon, sample_size, variance); in operator ()()
Dquantized_instance_norm.cc42 const uint32_t cols, float* mean, float* variance) { in ColMeanAndVariance() argument
128 vst1q_f32(variance + col_offset, vmulq_n_f32(M2A[3], inv_rows)); in ColMeanAndVariance()
129 vst1q_f32(variance + col_offset + 4, vmulq_n_f32(M2A[2], inv_rows)); in ColMeanAndVariance()
130 vst1q_f32(variance + col_offset + 8, vmulq_n_f32(M2A[1], inv_rows)); in ColMeanAndVariance()
131 vst1q_f32(variance + col_offset + 12, vmulq_n_f32(M2A[0], inv_rows)); in ColMeanAndVariance()
150 const float32x4_t variance[4] = {vld1q_f32(variance_ptr + col_offset), in MinAndMax() local
155 vrsqrteq_f32(vaddq_f32(variance[0], eps)), in MinAndMax()
156 vrsqrteq_f32(vaddq_f32(variance[1], eps)), in MinAndMax()
157 vrsqrteq_f32(vaddq_f32(variance[2], eps)), in MinAndMax()
158 vrsqrteq_f32(vaddq_f32(variance[3], eps))}; in MinAndMax()
[all …]
/external/python/cpython3/Doc/library/
Dstatistics.rst58 :func:`pvariance` Population variance of data.
60 :func:`variance` Sample variance of data.
299 variance). See :func:`pvariance` for arguments and other details.
309 Return the population variance of *data*, a non-empty iterable of real-valued
311 variability (spread or dispersion) of data. A large variance indicates that
312 the data is spread out; a small variance indicates it is clustered closely
319 Use this function to calculate the variance from the entire population. To
320 estimate the variance from a sample, the :func:`variance` function is usually
360 When called with the entire population, this gives the population variance
361 σ². When called on a sample instead, this is the biased sample variance
[all …]
/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_FusedBatchNormV2.pbtxt29 name: "variance"
31 A 1D Tensor for population variance. Used for inference only;
51 A 1D Tensor for the computed batch variance, to be used by
52 TensorFlow to compute the running variance.
65 A 1D Tensor for the computed batch variance (inverted variance
78 The data type for the scale, offset, mean, and variance.
84 A small float number added to the variance of x.
Dapi_def_FusedBatchNorm.pbtxt29 name: "variance"
31 A 1D Tensor for population variance. Used for inference only;
51 A 1D Tensor for the computed batch variance, to be used by
52 TensorFlow to compute the running variance.
65 A 1D Tensor for the computed batch variance (inverted variance
78 A small float number added to the variance of x.
Dapi_def_FusedBatchNormGradV2.pbtxt34 variance (inverted variance in the cuDNN case) to be reused in
36 for the population variance to be reused in both 1st and 2nd
67 Unused placeholder to match the variance input
80 The data type for the scale, offset, mean, and variance.
86 A small float number added to the variance of x.
Dapi_def_FusedBatchNormGrad.pbtxt34 variance (inverted variance in the cuDNN case) to be reused in
36 for the population variance to be reused in both 1st and 2nd
67 Unused placeholder to match the variance input
80 A small float number added to the variance of x.
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/
DStatisticalSummaryValues.java39 private final double variance; field in StatisticalSummaryValues
63 public StatisticalSummaryValues(double mean, double variance, long n, in StatisticalSummaryValues() argument
67 this.variance = variance; in StatisticalSummaryValues()
113 return FastMath.sqrt(variance); in getStandardDeviation()
120 return variance; in getVariance()
DAggregateSummaryStatistics.java332 final double variance; in aggregate() local
334 variance = Double.NaN; in aggregate()
336 variance = 0d; in aggregate()
338 variance = m2 / (n - 1); in aggregate()
340 return new StatisticalSummaryValues(mean, variance, n, max, min, sum); in aggregate()
/external/tensorflow/tensorflow/python/ops/
Dbatch_norm_benchmark.py40 def batch_norm_op(tensor, mean, variance, beta, gamma, scale): argument
46 tensor, mean, variance, beta, gamma, 0.001, scale)
55 def batch_norm_py(tensor, mean, variance, beta, gamma, scale): argument
57 return nn_impl.batch_normalization(tensor, mean, variance, beta, gamma if
61 def batch_norm_slow(tensor, mean, variance, beta, gamma, scale): argument
62 batch_norm = (tensor - mean) * math_ops.rsqrt(variance + 0.001)
99 mean, variance = nn_impl.moments(tensor, axes, keep_dims=keep_dims)
102 variance = array_ops.ones(moment_shape)
106 tensor = batch_norm_py(tensor, mean, variance, beta, gamma, scale)
108 tensor = batch_norm_op(tensor, mean, variance, beta, gamma, scale)
[all …]
Dnn_impl.py920 variance = math_ops.subtract(
924 return (mean, variance)
977 variance = math_ops.reduce_mean(
984 variance = array_ops.squeeze(variance, axes)
987 math_ops.cast(variance, dtypes.float16))
989 return (mean, variance)
1133 variance, argument
1180 with ops.name_scope(name, "batchnorm", [x, mean, variance, scale, offset]):
1181 inv = math_ops.rsqrt(variance + variance_epsilon)
1196 variance=None, argument
[all …]
/external/libhevc/encoder/
Dihevce_stasino_helpers.c145 ULWORD64 variance; in ihevce_calc_variance() local
152 variance = 0; in ihevce_calc_variance()
175 variance = in ihevce_calc_variance()
181 variance = ((total_elements * sq_sum) - (sum * sum)); in ihevce_calc_variance()
187 *pu4_variance = variance; in ihevce_calc_variance()
238 LWORD64 variance; in ihevce_calc_variance_signed() local
245 variance = 0; in ihevce_calc_variance_signed()
261 variance = ((total_elements * sq_sum) - (sum * sum)); // / (total_elements * (total_elements) ) in ihevce_calc_variance_signed()
265 *pu4_variance = variance; in ihevce_calc_variance_signed()
323 ULWORD64 variance; in ihevce_calc_chroma_variance() local
[all …]
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/inference/
DTTestImpl.java191 return t(StatUtils.mean(observed), mu, StatUtils.variance(observed), in t()
256 StatUtils.variance(sample1), StatUtils.variance(sample2), in homoscedasticT()
293 StatUtils.variance(sample1), StatUtils.variance(sample2), in t()
412 return tTest( StatUtils.mean(sample), mu, StatUtils.variance(sample), in tTest()
576 StatUtils.variance(sample1), StatUtils.variance(sample2), in tTest()
618 StatUtils.mean(sample2), StatUtils.variance(sample1), in homoscedasticTTest()
619 StatUtils.variance(sample2), sample1.length, in homoscedasticTTest()
/external/webrtc/webrtc/modules/audio_processing/test/
Dtest_utils.h107 float ComputeSNR(const T* ref, const T* test, size_t length, float* variance) { in ComputeSNR() argument
110 *variance = 0; in ComputeSNR()
114 *variance += ref[i] * ref[i]; in ComputeSNR()
118 *variance /= length; in ComputeSNR()
120 *variance -= mean * mean; in ComputeSNR()
124 snr = 10 * log10(*variance / mse); in ComputeSNR()
/external/libaom/libaom/av1/encoder/
Dvar_based_part.c46 int variance; member
147 v->variance = in get_variance()
209 vt.part_variances->none.variance < threshold) { in set_vt_partitioning()
220 vt.part_variances->none.variance > (threshold << 4))) { in set_vt_partitioning()
226 vt.part_variances->none.variance < threshold) { in set_vt_partitioning()
236 if (vt.part_variances->vert[0].variance < threshold && in set_vt_partitioning()
237 vt.part_variances->vert[1].variance < threshold && in set_vt_partitioning()
250 if (vt.part_variances->horz[0].variance < threshold && in set_vt_partitioning()
251 vt.part_variances->horz[1].variance < threshold && in set_vt_partitioning()
585 vt->split[m].split[i].split[j].part_variances.none.variance; in av1_choose_var_based_partitioning()
[all …]
Dblockiness.c31 static int variance(int sum, int sum_squared, int size) { in variance() function
78 var_0 = variance(sum_0, sum_sq_0, size); in blockiness_vertical()
79 var_1 = variance(sum_1, sum_sq_1, size); in blockiness_vertical()
110 var_0 = variance(sum_0, sum_sq_0, size); in blockiness_horizontal()
111 var_1 = variance(sum_1, sum_sq_1, size); in blockiness_horizontal()
/external/libvpx/libvpx/vp9/encoder/
Dvp9_blockiness.c24 static int variance(int sum, int sum_squared, int size) { in variance() function
71 var_0 = variance(sum_0, sum_sq_0, size); in blockiness_vertical()
72 var_1 = variance(sum_1, sum_sq_1, size); in blockiness_vertical()
103 var_0 = variance(sum_0, sum_sq_0, size); in blockiness_horizontal()
104 var_1 = variance(sum_1, sum_sq_1, size); in blockiness_horizontal()
/external/tensorflow/tensorflow/python/keras/layers/
Dnormalization.py457 variance=self.moving_variance,
462 output, mean, variance = tf_utils.smart_cond(
469 array_ops.size(inputs) / array_ops.size(variance), variance.dtype)
470 factor = (sample_size - math_ops.cast(1.0, variance.dtype)) / sample_size
471 variance *= factor
488 (variance, self.momentum))
493 variance, momentum)
499 def _renorm_correction_and_moments(self, mean, variance, training): argument
501 stddev = math_ops.sqrt(variance + self.epsilon)
639 mean, variance = self._moments(
[all …]
/external/webrtc/webrtc/common_audio/
Daudio_converter_unittest.cc58 float variance = 0; in ComputeSNR() local
64 variance += ref.channels()[i][j] * ref.channels()[i][j]; in ComputeSNR()
71 variance /= length; in ComputeSNR()
73 variance -= mean * mean; in ComputeSNR()
76 snr = 10 * std::log10(variance / mse); in ComputeSNR()

12345678910