/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/moment/ |
D | StandardDeviation.java | 48 private Variance variance = null; field in StandardDeviation 55 variance = new Variance(); in StandardDeviation() 64 variance = new Variance(m2); in StandardDeviation() 88 variance = new Variance(isBiasCorrected); in StandardDeviation() 103 variance = new Variance(isBiasCorrected, m2); in StandardDeviation() 111 variance.increment(d); in increment() 118 return variance.getN(); in getN() 126 return FastMath.sqrt(variance.getResult()); in getResult() 134 variance.clear(); in clear() 153 return FastMath.sqrt(variance.evaluate(values)); in evaluate() [all …]
|
D | Kurtosis.java | 111 double variance = moment.m2 / (moment.n - 1); in getResult() local 112 if (moment.n <= 3 || variance < 10E-20) { in getResult() 119 ((n - 1) * (n -2) * (n -3) * variance * variance); in getResult() 171 Variance variance = new Variance(); in evaluate() local 172 variance.incrementAll(values, begin, length); in evaluate() 173 double mean = variance.moment.m1; in evaluate() 174 double stdDev = FastMath.sqrt(variance.getResult()); in evaluate()
|
D | Skewness.java | 107 double variance = moment.m2 / (moment.n - 1); in getResult() local 108 if (variance < 10E-20) { in getResult() 113 ((n0 - 1) * (n0 -2) * FastMath.sqrt(variance) * variance); in getResult() 172 final double variance = (accum - (accum2 * accum2 / length)) / (length - 1); in evaluate() local 179 accum3 /= variance * FastMath.sqrt(variance); in evaluate()
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | initializers_test.py | 43 def _test_xavier(self, initializer, shape, variance, uniform): argument 53 self.assertAllClose(np.var(values), variance, 1e-3, 1e-3) 86 def _test_variance(self, initializer, shape, variance, factor, mode, uniform): argument 97 self.assertAllClose(np.var(values), variance, 1e-3, 1e-3) 104 variance=2. / 100., 114 variance=2. / 40., 124 variance=4. / (100. + 40.), 134 variance=2. / (100. * 40. * 5.), 144 variance=2. / (100. * 40. * 7.), 154 variance=2. / (100. * 40. * (5. + 7.)), [all …]
|
/external/guava/guava-tests/benchmark/com/google/common/math/ |
D | StatsBenchmark.java | 75 private final double variance; field in StatsBenchmark.MeanAndVariance 77 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument 79 this.variance = variance; in MeanAndVariance() 84 return Doubles.hashCode(mean) * 31 + Doubles.hashCode(variance); in hashCode() 91 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 97 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 109 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 126 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 141 abstract MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm); in variance() method in StatsBenchmark.VarianceAlgorithm 168 tmp += varianceAlgorithm.variance(values[i & 0xFF], meanAlgorithm).hashCode(); in meanAndVariance()
|
/external/webrtc/webrtc/modules/audio_processing/intelligibility/ |
D | intelligibility_utils_unittest.cc | 87 EXPECT_EQ(0, variance_array.variance()[0]); in TEST() 90 EXPECT_EQ(0, variance_array.variance()[0]); in TEST() 100 EXPECT_GE(variance_array.variance()[j], 0.0f); in TEST() 101 EXPECT_LE(variance_array.variance()[j], 1.0f); in TEST() 105 EXPECT_EQ(0, variance_array.variance()[0]); in TEST() 141 EXPECT_EQ(0, variance_array.variance()[j]); in TEST() 143 EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j], in TEST() 146 EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j], in TEST() 149 EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j], in TEST() 152 EXPECT_EQ(0, variance_array.variance()[j]); in TEST()
|
/external/tensorflow/tensorflow/core/kernels/ |
D | fused_batch_norm_op.cu.cc | 38 const T* variance, double epsilon, in operator ()() argument 43 variance, epsilon, inv_variance); in operator ()() 48 int sample_size, T* variance) { in InvVarianceToVarianceKernel() argument 50 T inv_var = variance[index]; in InvVarianceToVarianceKernel() 54 variance[index] = (var > 0) ? var : 0; in InvVarianceToVarianceKernel() 61 int channels, T* variance) { in operator ()() argument 65 epsilon, sample_size, variance); in operator ()()
|
D | quantized_instance_norm.cc | 42 const uint32_t cols, float* mean, float* variance) { in ColMeanAndVariance() argument 128 vst1q_f32(variance + col_offset, vmulq_n_f32(M2A[3], inv_rows)); in ColMeanAndVariance() 129 vst1q_f32(variance + col_offset + 4, vmulq_n_f32(M2A[2], inv_rows)); in ColMeanAndVariance() 130 vst1q_f32(variance + col_offset + 8, vmulq_n_f32(M2A[1], inv_rows)); in ColMeanAndVariance() 131 vst1q_f32(variance + col_offset + 12, vmulq_n_f32(M2A[0], inv_rows)); in ColMeanAndVariance() 150 const float32x4_t variance[4] = {vld1q_f32(variance_ptr + col_offset), in MinAndMax() local 155 vrsqrteq_f32(vaddq_f32(variance[0], eps)), in MinAndMax() 156 vrsqrteq_f32(vaddq_f32(variance[1], eps)), in MinAndMax() 157 vrsqrteq_f32(vaddq_f32(variance[2], eps)), in MinAndMax() 158 vrsqrteq_f32(vaddq_f32(variance[3], eps))}; in MinAndMax() [all …]
|
/external/python/cpython3/Doc/library/ |
D | statistics.rst | 58 :func:`pvariance` Population variance of data. 60 :func:`variance` Sample variance of data. 299 variance). See :func:`pvariance` for arguments and other details. 309 Return the population variance of *data*, a non-empty iterable of real-valued 311 variability (spread or dispersion) of data. A large variance indicates that 312 the data is spread out; a small variance indicates it is clustered closely 319 Use this function to calculate the variance from the entire population. To 320 estimate the variance from a sample, the :func:`variance` function is usually 360 When called with the entire population, this gives the population variance 361 σ². When called on a sample instead, this is the biased sample variance [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_FusedBatchNormV2.pbtxt | 29 name: "variance" 31 A 1D Tensor for population variance. Used for inference only; 51 A 1D Tensor for the computed batch variance, to be used by 52 TensorFlow to compute the running variance. 65 A 1D Tensor for the computed batch variance (inverted variance 78 The data type for the scale, offset, mean, and variance. 84 A small float number added to the variance of x.
|
D | api_def_FusedBatchNorm.pbtxt | 29 name: "variance" 31 A 1D Tensor for population variance. Used for inference only; 51 A 1D Tensor for the computed batch variance, to be used by 52 TensorFlow to compute the running variance. 65 A 1D Tensor for the computed batch variance (inverted variance 78 A small float number added to the variance of x.
|
D | api_def_FusedBatchNormGradV2.pbtxt | 34 variance (inverted variance in the cuDNN case) to be reused in 36 for the population variance to be reused in both 1st and 2nd 67 Unused placeholder to match the variance input 80 The data type for the scale, offset, mean, and variance. 86 A small float number added to the variance of x.
|
D | api_def_FusedBatchNormGrad.pbtxt | 34 variance (inverted variance in the cuDNN case) to be reused in 36 for the population variance to be reused in both 1st and 2nd 67 Unused placeholder to match the variance input 80 A small float number added to the variance of x.
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/ |
D | StatisticalSummaryValues.java | 39 private final double variance; field in StatisticalSummaryValues 63 public StatisticalSummaryValues(double mean, double variance, long n, in StatisticalSummaryValues() argument 67 this.variance = variance; in StatisticalSummaryValues() 113 return FastMath.sqrt(variance); in getStandardDeviation() 120 return variance; in getVariance()
|
D | AggregateSummaryStatistics.java | 332 final double variance; in aggregate() local 334 variance = Double.NaN; in aggregate() 336 variance = 0d; in aggregate() 338 variance = m2 / (n - 1); in aggregate() 340 return new StatisticalSummaryValues(mean, variance, n, max, min, sum); in aggregate()
|
/external/tensorflow/tensorflow/python/ops/ |
D | batch_norm_benchmark.py | 40 def batch_norm_op(tensor, mean, variance, beta, gamma, scale): argument 46 tensor, mean, variance, beta, gamma, 0.001, scale) 55 def batch_norm_py(tensor, mean, variance, beta, gamma, scale): argument 57 return nn_impl.batch_normalization(tensor, mean, variance, beta, gamma if 61 def batch_norm_slow(tensor, mean, variance, beta, gamma, scale): argument 62 batch_norm = (tensor - mean) * math_ops.rsqrt(variance + 0.001) 99 mean, variance = nn_impl.moments(tensor, axes, keep_dims=keep_dims) 102 variance = array_ops.ones(moment_shape) 106 tensor = batch_norm_py(tensor, mean, variance, beta, gamma, scale) 108 tensor = batch_norm_op(tensor, mean, variance, beta, gamma, scale) [all …]
|
D | nn_impl.py | 920 variance = math_ops.subtract( 924 return (mean, variance) 977 variance = math_ops.reduce_mean( 984 variance = array_ops.squeeze(variance, axes) 987 math_ops.cast(variance, dtypes.float16)) 989 return (mean, variance) 1133 variance, argument 1180 with ops.name_scope(name, "batchnorm", [x, mean, variance, scale, offset]): 1181 inv = math_ops.rsqrt(variance + variance_epsilon) 1196 variance=None, argument [all …]
|
/external/libhevc/encoder/ |
D | ihevce_stasino_helpers.c | 145 ULWORD64 variance; in ihevce_calc_variance() local 152 variance = 0; in ihevce_calc_variance() 175 variance = in ihevce_calc_variance() 181 variance = ((total_elements * sq_sum) - (sum * sum)); in ihevce_calc_variance() 187 *pu4_variance = variance; in ihevce_calc_variance() 238 LWORD64 variance; in ihevce_calc_variance_signed() local 245 variance = 0; in ihevce_calc_variance_signed() 261 variance = ((total_elements * sq_sum) - (sum * sum)); // / (total_elements * (total_elements) ) in ihevce_calc_variance_signed() 265 *pu4_variance = variance; in ihevce_calc_variance_signed() 323 ULWORD64 variance; in ihevce_calc_chroma_variance() local [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/inference/ |
D | TTestImpl.java | 191 return t(StatUtils.mean(observed), mu, StatUtils.variance(observed), in t() 256 StatUtils.variance(sample1), StatUtils.variance(sample2), in homoscedasticT() 293 StatUtils.variance(sample1), StatUtils.variance(sample2), in t() 412 return tTest( StatUtils.mean(sample), mu, StatUtils.variance(sample), in tTest() 576 StatUtils.variance(sample1), StatUtils.variance(sample2), in tTest() 618 StatUtils.mean(sample2), StatUtils.variance(sample1), in homoscedasticTTest() 619 StatUtils.variance(sample2), sample1.length, in homoscedasticTTest()
|
/external/webrtc/webrtc/modules/audio_processing/test/ |
D | test_utils.h | 107 float ComputeSNR(const T* ref, const T* test, size_t length, float* variance) { in ComputeSNR() argument 110 *variance = 0; in ComputeSNR() 114 *variance += ref[i] * ref[i]; in ComputeSNR() 118 *variance /= length; in ComputeSNR() 120 *variance -= mean * mean; in ComputeSNR() 124 snr = 10 * log10(*variance / mse); in ComputeSNR()
|
/external/libaom/libaom/av1/encoder/ |
D | var_based_part.c | 46 int variance; member 147 v->variance = in get_variance() 209 vt.part_variances->none.variance < threshold) { in set_vt_partitioning() 220 vt.part_variances->none.variance > (threshold << 4))) { in set_vt_partitioning() 226 vt.part_variances->none.variance < threshold) { in set_vt_partitioning() 236 if (vt.part_variances->vert[0].variance < threshold && in set_vt_partitioning() 237 vt.part_variances->vert[1].variance < threshold && in set_vt_partitioning() 250 if (vt.part_variances->horz[0].variance < threshold && in set_vt_partitioning() 251 vt.part_variances->horz[1].variance < threshold && in set_vt_partitioning() 585 vt->split[m].split[i].split[j].part_variances.none.variance; in av1_choose_var_based_partitioning() [all …]
|
D | blockiness.c | 31 static int variance(int sum, int sum_squared, int size) { in variance() function 78 var_0 = variance(sum_0, sum_sq_0, size); in blockiness_vertical() 79 var_1 = variance(sum_1, sum_sq_1, size); in blockiness_vertical() 110 var_0 = variance(sum_0, sum_sq_0, size); in blockiness_horizontal() 111 var_1 = variance(sum_1, sum_sq_1, size); in blockiness_horizontal()
|
/external/libvpx/libvpx/vp9/encoder/ |
D | vp9_blockiness.c | 24 static int variance(int sum, int sum_squared, int size) { in variance() function 71 var_0 = variance(sum_0, sum_sq_0, size); in blockiness_vertical() 72 var_1 = variance(sum_1, sum_sq_1, size); in blockiness_vertical() 103 var_0 = variance(sum_0, sum_sq_0, size); in blockiness_horizontal() 104 var_1 = variance(sum_1, sum_sq_1, size); in blockiness_horizontal()
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | normalization.py | 457 variance=self.moving_variance, 462 output, mean, variance = tf_utils.smart_cond( 469 array_ops.size(inputs) / array_ops.size(variance), variance.dtype) 470 factor = (sample_size - math_ops.cast(1.0, variance.dtype)) / sample_size 471 variance *= factor 488 (variance, self.momentum)) 493 variance, momentum) 499 def _renorm_correction_and_moments(self, mean, variance, training): argument 501 stddev = math_ops.sqrt(variance + self.epsilon) 639 mean, variance = self._moments( [all …]
|
/external/webrtc/webrtc/common_audio/ |
D | audio_converter_unittest.cc | 58 float variance = 0; in ComputeSNR() local 64 variance += ref.channels()[i][j] * ref.channels()[i][j]; in ComputeSNR() 71 variance /= length; in ComputeSNR() 73 variance -= mean * mean; in ComputeSNR() 76 snr = 10 * std::log10(variance / mse); in ComputeSNR()
|