/external/tensorflow/tensorflow/python/keras/saving/ |
D | hdf5_format.py | 278 weights, 296 def convert_nested_bidirectional(weights): argument 308 num_weights_per_layer = len(weights) // 2 310 layer.forward_layer, weights[:num_weights_per_layer], 313 layer.backward_layer, weights[num_weights_per_layer:], 317 def convert_nested_time_distributed(weights): argument 330 layer.layer, weights, original_keras_version, original_backend) 332 def convert_nested_model(weights): argument 351 weights=weights[:num_weights], 354 weights = weights[num_weights:] [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | weights_broadcast_test.py | 41 def _test_valid(self, weights, values): argument 43 weights=weights, values=values) 47 weights=weights_placeholder, values=values_placeholder) 51 weights_placeholder: weights, 57 self._test_valid(weights=5, values=_test_values((3, 2, 4))) 62 weights=np.asarray((5,)).reshape((1, 1, 1)), 68 weights=np.asarray((5, 7, 11, 3)).reshape((1, 1, 4)), 74 weights=np.asarray((5, 11)).reshape((1, 2, 1)), 80 weights=np.asarray((5, 7, 11, 3, 2, 13, 7, 5)).reshape((1, 2, 4)), 86 weights=np.asarray((5, 7, 11)).reshape((3, 1, 1)), [all …]
|
D | losses_test.py | 53 self._predictions, self._predictions, weights=None) 66 weights = 2.3 67 loss = losses.absolute_difference(self._labels, self._predictions, weights) 69 self.assertAlmostEqual(5.5 * weights, self.evaluate(loss), 3) 72 weights = 2.3 74 constant_op.constant(weights)) 76 self.assertAlmostEqual(5.5 * weights, self.evaluate(loss), 3) 79 weights = constant_op.constant((1.2, 0.0), shape=(2, 1)) 80 loss = losses.absolute_difference(self._labels, self._predictions, weights) 85 weights = constant_op.constant([1.2, 0.0], shape=[2, 1]) [all …]
|
D | metrics_test.py | 243 metrics.mean(values, weights=1.0), 244 metrics.mean(values, weights=np.ones((1, 1, 1))), 245 metrics.mean(values, weights=np.ones((1, 1, 1, 1))), 246 metrics.mean(values, weights=np.ones((1, 1, 1, 1, 1))), 247 metrics.mean(values, weights=np.ones((1, 1, 4))), 248 metrics.mean(values, weights=np.ones((1, 1, 4, 1))), 249 metrics.mean(values, weights=np.ones((1, 2, 1))), 250 metrics.mean(values, weights=np.ones((1, 2, 1, 1))), 251 metrics.mean(values, weights=np.ones((1, 2, 4))), 252 metrics.mean(values, weights=np.ones((1, 2, 4, 1))), [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | metrics_impl.py | 88 def _remove_squeezable_dimensions(predictions, labels, weights): argument 117 if weights is None: 120 weights = ops.convert_to_tensor(weights) 121 weights_shape = weights.get_shape() 124 return predictions, labels, weights 131 weights = array_ops.squeeze(weights, [-1]) 133 weights = array_ops.expand_dims(weights, [-1]) 136 weights_rank_tensor = array_ops.rank(weights) 142 lambda: array_ops.expand_dims(weights, [-1]), lambda: weights) 147 maybe_squeeze_weights = lambda: weights [all …]
|
D | weights_broadcast_ops.py | 63 def assert_broadcastable(weights, values): argument 81 with ops.name_scope(None, "assert_broadcastable", (weights, values)) as scope: 82 with ops.name_scope(None, "weights", (weights,)) as weights_scope: 83 weights = ops.convert_to_tensor(weights, name=weights_scope) 84 weights_shape = array_ops.shape(weights, name="shape") 85 weights_rank = array_ops.rank(weights, name="rank") 103 weights_rank_static, values.shape, weights.shape)) 123 "weights.shape=", weights.name, weights_shape, 136 def broadcast_weights(weights, values): argument 154 with ops.name_scope(None, "broadcast_weights", (weights, values)) as scope: [all …]
|
/external/tensorflow/tensorflow/contrib/metrics/python/ops/ |
D | metric_ops.py | 52 weights=None, argument 88 weights=weights, 98 weights=None, argument 134 weights=weights, 144 weights=None, argument 180 weights=weights, 190 weights=None, argument 225 weights=weights, 233 weights=None, argument 275 weights=weights, [all …]
|
/external/tensorflow/tensorflow/contrib/tensor_forest/client/ |
D | eval_metrics.py | 46 def _accuracy(predictions, targets, weights=None): argument 48 labels=targets, predictions=predictions, weights=weights) 51 def _r2(probabilities, targets, weights=None): argument 59 return metrics.mean(score, weights=weights) 67 def _sigmoid_entropy(probabilities, targets, weights=None): argument 73 weights=weights) 76 def _softmax_entropy(probabilities, targets, weights=None): argument 80 weights=weights) 87 def _class_log_loss(probabilities, targets, weights=None): argument 92 weights=weights) [all …]
|
/external/tensorflow/tensorflow/python/ops/losses/ |
D | losses_impl.py | 96 def _num_present(losses, weights, per_batch=False): argument 118 if ((isinstance(weights, float) and weights != 0.0) or 119 (context.executing_eagerly() and weights._rank() == 0 # pylint: disable=protected-access 120 and not math_ops.equal(weights, 0.0))): 122 with ops.name_scope(None, "num_present", (losses, weights)) as scope: 123 weights = math_ops.cast(weights, dtype=dtypes.float32) 125 math_ops.equal(weights, 0.0), 126 array_ops.zeros_like(weights), 127 array_ops.ones_like(weights)) 146 losses, weights=1.0, scope=None, loss_collection=ops.GraphKeys.LOSSES, argument [all …]
|
/external/tensorflow/tensorflow/contrib/losses/python/losses/ |
D | loss_ops_test.py | 49 self._predictions, self._predictions, weights=None) 62 weights = 2.3 64 weights) 66 self.assertAlmostEqual(5.5 * weights, loss.eval(), 3) 69 weights = 2.3 71 constant_op.constant(weights)) 73 self.assertAlmostEqual(5.5 * weights, loss.eval(), 3) 76 weights = constant_op.constant([1.2, 0.0], shape=[2,]) 78 weights) 83 weights = constant_op.constant([1.2, 0.0], shape=[2, 1]) [all …]
|
D | loss_ops.py | 44 def _scale_losses(losses, weights): argument 62 start_index = max(0, weights.get_shape().ndims) 65 reduced_losses = math_ops.multiply(reduced_losses, weights) 85 def compute_weighted_loss(losses, weights=1.0, scope=None): argument 101 with ops.name_scope(scope, "weighted_loss", [losses, weights]): 105 weights = math_ops.cast(ops.convert_to_tensor(weights), dtypes.float32) 109 weights_shape = weights.get_shape() 114 weights = array_ops.squeeze(weights, [-1]) 116 total_loss = _scale_losses(losses, weights) 117 num_present = _num_present(losses, weights) [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.metrics.pbtxt | 5 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_colle… 9 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'num_thresholds\', \'metrics_collection… 13 …argspec: "args=[\'labels\', \'predictions\', \'k\', \'weights\', \'metrics_collections\', \'update… 17 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_colle… 21 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',… 25 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_colle… 29 …argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\',… 33 …argspec: "args=[\'values\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\… 37 …argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_colle… 41 …argspec: "args=[\'labels\', \'predictions\', \'dim\', \'weights\', \'metrics_collections\', \'upda… [all …]
|
/external/freetype/src/base/ |
D | ftlcdfil.c | 81 FT_LcdFiveTapFilter weights ) in ft_lcd_filter_fir() argument 109 fir[2] = weights[2] * val; in ft_lcd_filter_fir() 110 fir[3] = weights[3] * val; in ft_lcd_filter_fir() 111 fir[4] = weights[4] * val; in ft_lcd_filter_fir() 114 fir[1] = fir[2] + weights[1] * val; in ft_lcd_filter_fir() 115 fir[2] = fir[3] + weights[2] * val; in ft_lcd_filter_fir() 116 fir[3] = fir[4] + weights[3] * val; in ft_lcd_filter_fir() 117 fir[4] = weights[4] * val; in ft_lcd_filter_fir() 122 fir[0] = fir[1] + weights[0] * val; in ft_lcd_filter_fir() 123 fir[1] = fir[2] + weights[1] * val; in ft_lcd_filter_fir() [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | head.py | 559 def _mean_squared_loss(labels, logits, weights=None): argument 572 return _compute_weighted_loss(loss, weights) 575 def _poisson_loss(labels, logits, weights=None): argument 589 return _compute_weighted_loss(loss, weights) 783 def _metrics(self, eval_loss, predictions, labels, weights): argument 785 del predictions, labels, weights # Unused by this head. 792 def _log_loss_with_two_classes(labels, logits, weights=None): argument 803 return _compute_weighted_loss(loss, weights) 918 def _metrics(self, eval_loss, predictions, labels, weights): argument 921 [eval_loss, labels, weights] + list(six.itervalues(predictions)))): [all …]
|
/external/tensorflow/tensorflow/contrib/seq2seq/python/kernel_tests/ |
D | loss_test.py | 49 weights = [ 53 self.weights = array_ops.stack(weights, axis=1) 62 self.logits, self.targets, self.weights, 69 self.logits, self.targets, self.weights, 77 self.logits, self.targets, self.weights, 85 self.logits, self.targets, self.weights, 101 self.targets, self.logits, self.weights) 110 self.targets, self.logits, self.weights) 120 self.targets, self.logits, self.weights) 130 self.targets, self.logits, self.weights) [all …]
|
/external/tensorflow/tensorflow/contrib/eager/python/ |
D | metrics_impl.py | 313 def call(self, values, weights=None): argument 326 if weights is None: 332 weights = math_ops.cast(weights, self.dtype) 333 self.denom.assign_add(math_ops.reduce_sum(weights)) 334 values = math_ops.cast(values, self.dtype) * weights 336 if weights is None: 338 return values, weights 376 def call(self, labels, predictions, weights=None): argument 399 super(Accuracy, self).call(matches, weights=weights) 400 if weights is None: [all …]
|
/external/cldr/tools/scripts/uca/ |
D | blankweights.sed | 1 # Blank out non-zero weights. 3 # Most of the collation element weights change with every new version. 4 # "Blanking out" the weights makes files comparable, 5 # for finding changes in sort order and changes in lengths of weights. 9 # protect allkeys 0000 weights 12 # fractional primary weights 16 # fractional secondary weights 19 # fractional tertiary weights 22 # allkeys primary weights 25 # allkeys secondary weights [all …]
|
/external/tensorflow/tensorflow/core/lib/random/ |
D | distribution_sampler_test.cc | 34 float TestWeights(const std::vector<float>& weights, int trials_per_bin) { in TestWeights() argument 35 int iters = weights.size() * trials_per_bin; in TestWeights() 36 std::unique_ptr<float[]> counts(new float[weights.size()]); in TestWeights() 37 memset(counts.get(), 0, sizeof(float) * weights.size()); in TestWeights() 38 DistributionSampler sampler(weights); in TestWeights() 43 EXPECT_LT(r, weights.size()); in TestWeights() 48 for (size_t i = 0; i < weights.size(); i++) { in TestWeights() 50 float err = (counts[i] - weights[i]); in TestWeights() 51 chi2 += (err * err) / weights[i]; in TestWeights() 89 std::vector<float> weights(n, 0); in BM_DistributionSampler() local [all …]
|
D | weighted_picker_test.cc | 34 static void TestPickAt(int items, const int32* weights); 103 static const int32 weights[] = {1, 0, 200, 5, 42}; in TEST() local 104 TestPickAt(TF_ARRAYSIZE(weights), weights); in TEST() 132 std::vector<int32> weights(size); in TestPicker() local 134 weights[elem] = 0; in TestPicker() 143 weights[elem] = 10; in TestPicker() 144 picker.SetWeightsFromArray(size, &weights[0]); in TestPicker() 146 weights[elem] = 0; in TestPicker() 171 weights[elem] = weight; in TestPicker() 178 array_picker.SetWeightsFromArray(size, &weights[0]); in TestPicker() [all …]
|
/external/libtextclassifier/lang_id/common/flatbuffers/ |
D | embedding-network-params-from-flatbuffer.h | 93 const saft_fbs::Matrix *weights = SafeGetLayerWeights(i); in hidden_num_rows() local 94 return SafeGetNumRows(weights); in hidden_num_rows() 98 const saft_fbs::Matrix *weights = SafeGetLayerWeights(i); in hidden_num_cols() local 99 return SafeGetNumCols(weights); in hidden_num_cols() 103 const saft_fbs::Matrix *weights = SafeGetLayerWeights(i); in hidden_weights_quant_type() local 104 return SafeGetQuantizationType(weights); in hidden_weights_quant_type() 108 const saft_fbs::Matrix *weights = SafeGetLayerWeights(i); in hidden_weights() local 109 return SafeGetValuesOfMatrix(weights); in hidden_weights() 132 const saft_fbs::Matrix *weights = SafeGetSoftmaxWeights(); in softmax_num_rows() local 133 return SafeGetNumRows(weights); in softmax_num_rows() [all …]
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ |
D | metric_spec.py | 162 _sentinel=None, labels=None, predictions=None, weights=None): argument 168 if weights is not None: 169 kwargs[weights_arg] = weights 178 _sentinel=None, labels=None, predictions=None, weights=None): argument 183 if weights is None: 185 return metric_fn(labels, predictions, **{weights_arg: weights}) 191 _sentinel=None, labels=None, predictions=None, weights=None): argument 196 if weights is not None: 197 kwargs[weights_arg] = weights 204 _sentinel=None, labels=None, predictions=None, weights=None): argument [all …]
|
D | metric_spec_test.py | 35 def _fn0(predictions, labels, weights=None): argument 38 self.assertEqual("f2_value", weights) 41 def _fn1(predictions, targets, weights=None): argument 44 self.assertEqual("f2_value", weights) 222 def _fn(predictions, labels, weights=None): argument 223 del labels, predictions, weights 238 def _fn(labels, predictions, weights=None): argument 239 del labels, predictions, weights 254 def _fn(predictions, labels, weights=None): argument 257 self.assertEqual("f2_value", weights) [all …]
|
/external/tensorflow/tensorflow/contrib/model_pruning/python/ |
D | pruning_utils_test.py | 57 def _compare_pooling_methods(self, weights, pooling_kwargs): argument 63 weights, 64 [1, weights.get_shape()[0], 65 weights.get_shape()[1], 1]), **pooling_kwargs), 68 weights, **pooling_kwargs) 84 weights = variable_scope.get_variable("weights", shape=input_shape) 91 self._compare_pooling_methods(weights, pooling_kwargs) 94 weights = variable_scope.get_variable("weights", shape=input_shape) 101 self._compare_pooling_methods(weights, pooling_kwargs) 104 weights = random_ops.random_normal(shape=input_shape) [all …]
|
/external/tensorflow/tensorflow/examples/android/jni/object_tracking/ |
D | frame_pair.cc | 36 static float weights[kMaxKeypoints]; in AdjustBox() local 38 memset(weights, 0.0f, sizeof(*weights) * kMaxKeypoints); in AdjustBox() 42 FillWeights(resized_box, weights); in AdjustBox() 45 const Point2f translation = GetWeightedMedian(weights, deltas); in AdjustBox() 52 FillScales(old_center, translation, weights, deltas); in AdjustBox() 71 const float scale_factor = GetWeightedMedianScale(weights, deltas); in AdjustBox() 81 float* const weights) const { in FillWeights() 95 weights[i] = 0.0f; in FillWeights() 131 weights[i] = distance_score * intrinsic_score; in FillWeights() 151 float* const weights, in FillScales() argument [all …]
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/utils/ |
D | losses.py | 30 def per_example_squared_hinge_loss(labels, weights, predictions): argument 31 loss = losses.hinge_loss(labels=labels, logits=predictions, weights=weights) 35 def per_example_logistic_loss(labels, weights, predictions): argument 50 return unweighted_loss * weights, control_flow_ops.no_op() 60 def per_example_quantile_regression_loss(labels, weights, predictions, argument 89 if weights is None: 92 return unweighted_loss * weights, control_flow_ops.no_op() 97 def per_example_maxent_loss(labels, weights, logits, num_classes, eps=1e-15): argument 151 if weights is None: 154 return unweighted_loss * weights, control_flow_ops.no_op() [all …]
|