/external/autotest/cli/ |
D | compose_query | 33 data_column_width = max([max(13,len(x)) for x in test_data.x_values]) 34 column_widths = [widest_row_header] + [data_column_width] * len(test_data.x_values) 37 print format % tuple([''] + test_data.x_values) 42 for x in test_data.x_values:
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | distributed_training_utils.py | 293 x_values = distribution_strategy.unwrap(x) 296 validate_all_tensor_shapes(x, x_values) 297 validate_all_tensor_types(x, x_values) 299 x_values_list.append(x_values[0]) 303 def validate_all_tensor_types(x, x_values): argument 304 x_dtype = x_values[0].dtype 305 for i in range(1, len(x_values)): 306 if x_dtype != x_values[i].dtype: 311 def validate_all_tensor_shapes(x, x_values): argument 313 x_shape = x_values[0].get_shape().as_list() [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | quantized_mul_op_test.cc | 39 const std::vector<float>& x_values, float x_min_value, in TestMul() argument 47 test::FillValues<float>(&x_float_tensor, x_values); in TestMul() 90 std::vector<float> x_values(x_num_elements); in TestMulShape() local 92 x_values[i] = i % 256; in TestMulShape() 108 test::FillValues<float>(&x_float_tensor, x_values); in TestMulShape() 133 TestMul(x_shape, x_values, x_min_value, x_max_value, y_shape, y_values, in TestMulShape()
|
D | quantized_add_op_test.cc | 39 const std::vector<float>& x_values, float x_min_value, in TestAdd() argument 47 test::FillValues<float>(&x_float_tensor, x_values); in TestAdd() 90 std::vector<float> x_values(x_num_elements); in TestAddShape() local 92 x_values[i] = i % 256; in TestAddShape() 108 test::FillValues<float>(&x_float_tensor, x_values); in TestAddShape() 133 TestAdd(x_shape, x_values, x_min_value, x_max_value, y_shape, y_values, in TestAddShape()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | sparse_tensor_dense_matmul_grad_test.py | 39 x_values = x[non_zero] 43 indices=x_indices, values=x_values, dense_shape=x_shape), len(x_values)
|
D | sparse_tensor_dense_matmul_op_test.py | 66 x_values = x[np.where(x)] 71 indices=x_indices, values=x_values, dense_shape=x_shape) 117 x_values = x[np.where(x)] 119 x_st = sparse_tensor.SparseTensor(x_indices, x_values, x_shape) 124 x_st_shape_unknown = sparse_tensor.SparseTensor(x_indices, x_values, 132 x_st_shape_inconsistent = sparse_tensor.SparseTensor(x_indices, x_values,
|
D | sparse_conditional_accumulator_test.py | 476 x_values = array_ops.placeholder(dtypes_lib.float32) 478 accum_op = q.apply_grad(grad_indices=x_indices, grad_values=x_values) 486 x_values: np.array([1, 2]).astype(np.float32) 496 x_values = array_ops.placeholder(dtypes_lib.float32) 498 accum_op = q.apply_grad(grad_indices=x_indices, grad_values=x_values) 505 x_values: np.array([[0, 1, 1]]).astype(np.float32)
|
D | sparse_add_op_test.py | 44 x_values = x[non_zero] 48 indices=x_indices, values=x_values, dense_shape=x_shape), len(x_values)
|
D | shape_ops_test.py | 44 x_values = x[non_zero] 48 indices=x_indices, values=x_values, dense_shape=x_shape), len(x_values)
|
D | cwise_ops_unary_test.py | 48 x_values = x[non_zero] 52 indices=x_indices, values=x_values, dense_shape=x_shape), x_values
|
D | cwise_ops_binary_test.py | 53 x_values = x[non_zero] 57 indices=x_indices, values=x_values, dense_shape=x_shape), x_values
|
D | sparse_ops_test.py | 46 x_values = x[non_zero] 50 indices=x_indices, values=x_values, dense_shape=x_shape), len(x_values)
|
D | cwise_ops_test.py | 63 x_values = x[non_zero] 67 indices=x_indices, values=x_values, dense_shape=x_shape), x_values
|
/external/autotest/tko/ |
D | compose_query.cgi | 295 if not f_column in test_data.x_values: 296 test_data.x_values.append(f_column) 308 for x in test_data.x_values: 325 for x in test_data.x_values:
|
D | frontend.py | 64 self.x_values = smart_sort(data.keys(), x_field) 67 nCells = len(self.y_values)*len(self.x_values)
|
/external/tensorflow/tensorflow/contrib/rnn/python/kernel_tests/ |
D | lstm_ops_test.py | 303 x_values = np.random.randn(1, 2) 322 x.name: x_values, 339 x.name: x_values, 353 x_values = np.random.randn(1, 2) 375 x.name: x_values, 392 x.name: x_values,
|
D | gru_ops_test.py | 111 x_values = np.random.rand(time_steps, batch_size, input_size) 123 feeds = {concat_x: x_values, h: h_value} 136 feeds = {concat_x: x_values, h: h_value} 235 x_values = np.random.rand(time_steps, batch_size, input_size) 237 feeds = {concat_x: x_values, h: h_value}
|
/external/tensorflow/tensorflow/tools/graph_transforms/ |
D | quantize_nodes_test.cc | 250 std::vector<float> x_values(x_num_elements); in TestQuantizeMul() local 252 x_values[i] = (i % 256) / 256.0f; in TestQuantizeMul() 265 test::FillValues<float>(&x_float_tensor, x_values); in TestQuantizeMul() 285 std::vector<float> x_values(x_num_elements); in TestQuantizeAdd() local 287 x_values[i] = (i % 256) / 256.0f; in TestQuantizeAdd() 300 test::FillValues<float>(&x_float_tensor, x_values); in TestQuantizeAdd()
|
/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_dispatch.py | 211 x_values = x.flat_values if ragged_tensor.is_ragged(x) else x 213 mapped_values = self._original_op(x_values, y_values, *args, **kwargs)
|
/external/tensorflow/tensorflow/python/ops/ |
D | gradients_test.py | 674 x_values = [rng.randn(m).astype("float32") for _ in range(n)] 678 xs = [constant_op.constant(x_value) for x_value in x_values]
|