Home
last modified time | relevance | path

Searched refs:y_b (Results 1 – 3 of 3) sorted by relevance

/external/tensorflow/tensorflow/core/util/ctc/
Dctc_loss_calculator.h203 Matrix y_b = y.leftCols(seq_len(b)); in CalculateLoss() local
214 y_b.col(t) = y_b_col / y_b_col.sum(); in CalculateLoss()
219 CalculateForwardVariables(l_prime, y_b, ctc_merge_repeated, &log_alpha_b); in CalculateLoss()
221 CalculateBackwardVariables(l_prime, y_b, ctc_merge_repeated, &log_beta_b); in CalculateLoss()
238 CalculateGradient(l_prime, y_b, log_alpha_b, log_beta_b, log_p_z_x, in CalculateLoss()
/external/tensorflow/tensorflow/python/keras/
Dmetrics_functional_test.py34 y_b = K.variable(np.random.random((6, 7)))
36 output = metric(y_a, y_b)
Dlosses_test.py72 y_b = keras.backend.variable(np.random.random((5, 6, 7)))
74 objective_output = obj(y_a, y_b)
80 y_b = keras.backend.variable(np.random.random((6, 7)))
82 objective_output = obj(y_a, y_b)
88 y_b = keras.backend.variable(np.random.random((5, 6, 7)))
89 objective_output = keras.losses.sparse_categorical_crossentropy(y_a, y_b)
93 y_b = keras.backend.variable(np.random.random((6, 7)))
94 objective_output = keras.losses.sparse_categorical_crossentropy(y_a, y_b)