/external/tensorflow/tensorflow/python/kernel_tests/ |
D | conv3d_transpose_test.py | 41 y_shape = [2, 5, 6, 4, 2] 51 x, f, y_shape, strides=strides, padding="SAME") 69 for w in xrange(y_shape[3]): 70 for h in xrange(y_shape[2]): 71 for d in xrange(y_shape[1]): 72 d_in = d > 0 and d < y_shape[1] - 1 73 h_in = h > 0 and h < y_shape[2] - 1 74 w_in = w > 0 and w < y_shape[3] - 1 91 y_shape = [2, 10, 12, 8, 2] 101 x, f, y_shape, strides=strides, padding="SAME") [all …]
|
D | conv2d_transpose_test.py | 45 y_shape = [2, 6, 4, 2] 55 x, f, y_shape, strides=strides, padding="SAME") 66 for w in xrange(y_shape[2]): 67 for h in xrange(y_shape[1]): 69 h_in = h > 0 and h < y_shape[1] - 1 70 w_in = w > 0 and w < y_shape[2] - 1 83 y_shape = [2, 12, 8, 2] 93 x, f, y_shape, strides=strides, padding="SAME") 98 for w in xrange(y_shape[2]): 99 for h in xrange(y_shape[1]): [all …]
|
D | conv1d_transpose_test.py | 41 y_shape = [2, 6, 2] 51 x, f, y_shape, strides=strides, padding="SAME") 54 for n in xrange(y_shape[0]): 55 for w in xrange(y_shape[1]): 56 for c in xrange(y_shape[2]): 58 w_in = w > 0 and w < y_shape[1] - 1 69 y_shape = [2, 8, 2] 79 x, f, y_shape, strides=strides, padding="SAME") 84 for w in xrange(y_shape[1]): 87 w_in = w % strides[1] == 0 and w > 0 and w < y_shape[1] - 1 [all …]
|
D | conv1d_test.py | 61 y_shape = [2, 9, 2] 71 x, f, y_shape, strides=stride, padding="VALID") 74 cache_values = np.zeros(y_shape, dtype=np.float32) 81 for w in xrange(pad, y_shape[1] - pad): 84 w_in = w % stride == 0 and w > pad and w < y_shape[1] - 1 - pad
|
D | atrous_conv2d_test.py | 149 y_shape = [2, 5, 6, 2] 161 output, y_shape) 192 y_shape = [2, height, width, 2] 194 y_shape = [ 199 y1 = nn_ops.atrous_conv2d_transpose(x, f, y_shape, rate, 202 x, f_up, y_shape, strides=[1, 1, 1, 1], padding=padding)
|
/external/tensorflow/tensorflow/cc/gradients/ |
D | array_grad_test.cc | 36 const TensorShape& y_shape) { in RunTest() argument 40 scope_, {x}, {x_shape}, {y}, {y_shape}, &max_error))); in RunTest() 62 TensorShape y_shape({2, 1, 2, 3}); in TEST_F() local 63 RunTest(xs, {x_shape, x_shape}, {y}, {y_shape}); in TEST_F() 72 TensorShape y_shape({1, 2, 2, 3}); in TEST_F() local 73 RunTest(xs, {x_shape, x_shape}, {y}, {y_shape}); in TEST_F() 107 TensorShape y_shape = TensorShape({5, 1}); in TEST_F() local 108 RunTest({x}, {x_shape}, y.output, {y_shape, y_shape}); in TEST_F() 114 TensorShape y_shape({2, 5, 3}); in TEST_F() local 116 RunTest(x, x_shape, y, y_shape); in TEST_F() [all …]
|
D | nn_grad_test.cc | 55 const TensorShape& y_shape) { in RunTest() argument 58 scope_, {x}, {x_shape}, {y}, {y_shape}, &max_error))); in RunTest() 63 const TensorShape& y_shape) { in RunTest() argument 66 scope_, x, x_init_value, y, y_shape, &max_error))); in RunTest() 212 TensorShape y_shape({1}); in TEST_F() local 215 RunTest(x, x_shape, y, y_shape); in TEST_F() 238 TensorShape y_shape({1, 1, 1, 1}); in TEST_F() local 246 RunTest(x, x_init_value, y, y_shape); in TEST_F() 251 TensorShape y_shape({1, 1, 1, 1}); in TEST_F() local 259 RunTest(x, x_init_value, y, y_shape); in TEST_F() [all …]
|
D | math_grad_test.cc | 581 TensorShape y_shape = shapes[1]; in TestMatMulGrad() local 586 Placeholder(root_, DataTypeToEnum<T>::v(), Placeholder::Shape(y_shape)); in TestMatMulGrad() 596 root_, {x, y}, {x_shape, y_shape}, {z}, {z_shape}, &max_error))); in TestMatMulGrad() 619 TensorShape y_shape; in RandMatMulShapes() local 622 y_shape = ty ? TensorShape({b, n, k}) : TensorShape({b, k, n}); in RandMatMulShapes() 625 y_shape = ty ? TensorShape({n, k}) : TensorShape({k, n}); in RandMatMulShapes() 627 shapes->push_back(y_shape); in RandMatMulShapes() 723 const TensorShape& y_shape) { in RunTest() argument 727 scope_, x, x_init_value, y, y_shape, &max_error))); in RunTest() 739 TensorShape y_shape({2, 5}); in TEST_F() local [all …]
|
D | image_grad_test.cc | 54 void MakeOp(const OpType op_type, const Tensor& x_data, const Input& y_shape, in MakeOp() argument 61 scope_, *x, y_shape, in MakeOp() 65 *y = ResizeBilinear(scope_, *x, y_shape, in MakeOp() 70 *y = ResizeBicubic(scope_, *x, y_shape, in MakeOp() 199 void MakeOp(const Tensor& x_data, const Input& y_shape, Input scale, in MakeOp() argument 203 *y = ScaleAndTranslate(scope_, *x, y_shape, scale, translation, in MakeOp()
|
D | data_flow_grad_test.cc | 67 TensorShape y_shape({3, 2}); in TEST_F() local 68 RunTest(data, {d1_shape, d2_shape}, {y}, {y_shape}); in TEST_F()
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | conv3d_test.py | 77 y_shape = [2, 5, 6, 4, 2] 87 x, f, y_shape, strides=strides, padding="SAME") 105 for w in xrange(y_shape[3]): 106 for h in xrange(y_shape[2]): 107 for d in xrange(y_shape[1]): 108 d_in = d > 0 and d < y_shape[1] - 1 109 h_in = h > 0 and h < y_shape[2] - 1 110 w_in = w > 0 and w < y_shape[3] - 1 127 y_shape = [2, 10, 12, 8, 2] 137 x, f, y_shape, strides=strides, padding="SAME") [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | gradient_checker.py | 134 def _compute_numeric_jacobian(x, x_shape, x_data, y, y_shape, delta, argument 169 y_size = _product(y_shape) * (2 if y.dtype.is_complex else 1) 195 def _compute_dx_and_dy(x, y, y_shape): argument 202 dy_orig = constant_op.constant(1.0, shape=y_shape, dtype=y.dtype) 214 y_shape, argument 238 x, x_shape, x_data, dy, y_shape, dx, extra_feed_dict=extra_feed_dict) 240 x, x_shape, x_data, y, y_shape, delta, extra_feed_dict=extra_feed_dict) 247 y_shape, argument 254 dx, dy = zip(*[_compute_dx_and_dy(xi, y, y_shape) for xi in x]) 262 ret = [_compute_gradient(xi, x_shapei, dxi, y, y_shape, dyi, x_init_valuei, [all …]
|
D | gradient_checker_v2.py | 126 def _compute_theoretical_jacobian(f, y_shape, y_dtype, xs, param): argument 154 y_size = _product(y_shape) * y_factor 163 dy_data = np.zeros(y_shape, dtype=y_dtype.as_numpy_dtype) 260 y_shape, argument 276 y_size = _product(y_shape) 277 jacob_t = _compute_theoretical_jacobian(f, y_shape, y_dtype,
|
D | image_ops_test.py | 1526 y_shape, argument 1529 target_height, target_width, _ = y_shape 1531 y = np.array(y).reshape(y_shape) 1578 y_shape = [2, 3, 1] 1580 self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) 1583 y_shape = [3, 2, 1] 1585 self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) 1588 y_shape = [2, 3, 1] 1590 self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape) 1593 y_shape = [3, 2, 1] [all …]
|
D | sparse_grad.py | 216 y_shape = math_ops.cast(array_ops.shape(y), dtypes.int64) 218 array_ops.size(x_shape) - array_ops.size(y_shape), 0) 220 [array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0) 238 sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))
|
/external/tensorflow/tensorflow/core/kernels/ |
D | quantized_mul_op_test.cc | 40 float x_max_value, const std::vector<int64>& y_shape, in TestMul() argument 56 Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); in TestMul() 88 const std::vector<int64>& y_shape) { in TestMulShape() argument 97 const size_t y_num_elements = TensorShape(y_shape).num_elements(); in TestMulShape() 111 Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); in TestMulShape() 133 TestMul(x_shape, x_values, x_min_value, x_max_value, y_shape, y_values, in TestMulShape() 138 const std::vector<int64>& y_shape, int64 iterations) { in TimeMul() argument 139 TestMulShape(x_shape, y_shape); in TimeMul() 148 Tensor y_quantized_tensor(DT_QUINT8, TensorShape(y_shape)); in TimeMul() 178 << TensorShape(y_shape).DebugString() in TimeMul()
|
D | quantized_add_op_test.cc | 40 float x_max_value, const std::vector<int64>& y_shape, in TestAdd() argument 56 Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); in TestAdd() 88 const std::vector<int64>& y_shape) { in TestAddShape() argument 97 const size_t y_num_elements = TensorShape(y_shape).num_elements(); in TestAddShape() 111 Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); in TestAddShape() 133 TestAdd(x_shape, x_values, x_min_value, x_max_value, y_shape, y_values, in TestAddShape() 138 const std::vector<int64>& y_shape, int64 iterations) { in TimeAdd() argument 139 TestAddShape(x_shape, y_shape); in TimeAdd() 148 Tensor y_quantized_tensor(DT_QUINT8, TensorShape(y_shape)); in TimeAdd() 178 << TensorShape(y_shape).DebugString() in TimeAdd()
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/bijectors/ |
D | fill_triangular_test.py | 57 y_shape = tensor_shape.TensorShape([5, 4, 3, 3]) 63 self.assertAllEqual(y_.shape.as_list(), y_shape.as_list()) 68 self.assertAllEqual(y_shape_.as_list(), y_shape.as_list()) 69 x_shape_ = b.inverse_event_shape(y_shape) 74 self.assertAllEqual(y_shape_tensor, y_shape.as_list()) 76 b.inverse_event_shape_tensor(y_shape.as_list()))
|
/external/tensorflow/tensorflow/cc/framework/ |
D | gradient_checker_test.cc | 127 TensorShape y_shape({3, 2}); in TEST() local 131 auto y = Const(scope, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}, y_shape); in TEST() 147 TensorShape y_shape = TensorShape({5, 1}); in TEST() local 150 scope, {x}, {x_shape}, y.output, {y_shape, y_shape}, &max_error))); in TEST() 162 TensorShape y_shape({2, 1, 2, 3}); in TEST() local 165 scope, xs, {x_shape, x_shape}, {y}, {y_shape}, &max_error))); in TEST()
|
D | gradient_checker.cc | 114 for (const auto& y_shape : y_shapes) { in ComputeTheoreticalJacobianTranspose() local 117 ops::Cast(scope, ops::Const(scope, 1.0, y_shape), ys[0].type())); in ComputeTheoreticalJacobianTranspose() 401 const TensorShape& y_shape, JAC_T* max_error) { in ComputeGradientError() argument 406 scope, {x}, {x_datas[0].shape()}, {y}, {y_shape}, &x_datas, max_error); in ComputeGradientError() 416 const Output& y, const TensorShape& y_shape, JAC_T* max_error);
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | kernelized_utils.py | 41 y_shape = y_matrix.shape 42 if y_shape[1] != x_shape[1]: # dimensions do not match. 45 'vs {}.'.format(y_shape[1], x_shape[1])) 48 array_ops.expand_dims(x_matrix, 1), [1, y_shape[0], 1])
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/ |
D | data_feeder.py | 48 def _get_in_out_shape(x_shape, y_shape, n_classes, batch_size=None): argument 51 x_shape, dict), y_shape is not None and isinstance(y_shape, dict) 68 if y_shape is None: 82 output_shape = out_el_shape(y_shape, n_classes) 88 for k, v in list(y_shape.items())]) 358 y_shape = dict([(k, v.shape) for k, v in list(self._y.items()) 362 x_shape, y_shape, n_classes, batch_size) 864 y_shape = (x_count, len(self._y.columns)) 869 x_shape, y_shape, n_classes, batch_size)
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.test.pbtxt | 29 …argspec: "args=[\'x\', \'x_shape\', \'y\', \'y_shape\', \'x_init_value\', \'delta\', \'init_target… 33 …argspec: "args=[\'x\', \'x_shape\', \'y\', \'y_shape\', \'x_init_value\', \'delta\', \'init_target…
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/ |
D | models.py | 93 y_shape = y.get_shape() 94 if len(y_shape) == 1: 97 output_shape = y_shape[1]
|
/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_tensor_shape_test.py | 374 y_shape = RaggedTensorDynamicShape.from_dim_sizes(y_dims) 376 result1 = ragged_tensor_shape.broadcast_dynamic_shape(x_shape, y_shape) 377 result2 = ragged_tensor_shape.broadcast_dynamic_shape(y_shape, x_shape)
|