Home
last modified time | relevance | path

Searched refs:y_shape (Results 1 – 25 of 43) sorted by relevance

12

/external/tensorflow/tensorflow/python/kernel_tests/
Dconv3d_transpose_test.py41 y_shape = [2, 5, 6, 4, 2]
51 x, f, y_shape, strides=strides, padding="SAME")
69 for w in xrange(y_shape[3]):
70 for h in xrange(y_shape[2]):
71 for d in xrange(y_shape[1]):
72 d_in = d > 0 and d < y_shape[1] - 1
73 h_in = h > 0 and h < y_shape[2] - 1
74 w_in = w > 0 and w < y_shape[3] - 1
91 y_shape = [2, 10, 12, 8, 2]
101 x, f, y_shape, strides=strides, padding="SAME")
[all …]
Dconv2d_transpose_test.py45 y_shape = [2, 6, 4, 2]
55 x, f, y_shape, strides=strides, padding="SAME")
66 for w in xrange(y_shape[2]):
67 for h in xrange(y_shape[1]):
69 h_in = h > 0 and h < y_shape[1] - 1
70 w_in = w > 0 and w < y_shape[2] - 1
83 y_shape = [2, 12, 8, 2]
93 x, f, y_shape, strides=strides, padding="SAME")
98 for w in xrange(y_shape[2]):
99 for h in xrange(y_shape[1]):
[all …]
Dconv1d_transpose_test.py41 y_shape = [2, 6, 2]
51 x, f, y_shape, strides=strides, padding="SAME")
54 for n in xrange(y_shape[0]):
55 for w in xrange(y_shape[1]):
56 for c in xrange(y_shape[2]):
58 w_in = w > 0 and w < y_shape[1] - 1
69 y_shape = [2, 8, 2]
79 x, f, y_shape, strides=strides, padding="SAME")
84 for w in xrange(y_shape[1]):
87 w_in = w % strides[1] == 0 and w > 0 and w < y_shape[1] - 1
[all …]
Dconv1d_test.py61 y_shape = [2, 9, 2]
71 x, f, y_shape, strides=stride, padding="VALID")
74 cache_values = np.zeros(y_shape, dtype=np.float32)
81 for w in xrange(pad, y_shape[1] - pad):
84 w_in = w % stride == 0 and w > pad and w < y_shape[1] - 1 - pad
Datrous_conv2d_test.py149 y_shape = [2, 5, 6, 2]
161 output, y_shape)
192 y_shape = [2, height, width, 2]
194 y_shape = [
199 y1 = nn_ops.atrous_conv2d_transpose(x, f, y_shape, rate,
202 x, f_up, y_shape, strides=[1, 1, 1, 1], padding=padding)
/external/tensorflow/tensorflow/cc/gradients/
Darray_grad_test.cc36 const TensorShape& y_shape) { in RunTest() argument
40 scope_, {x}, {x_shape}, {y}, {y_shape}, &max_error))); in RunTest()
62 TensorShape y_shape({2, 1, 2, 3}); in TEST_F() local
63 RunTest(xs, {x_shape, x_shape}, {y}, {y_shape}); in TEST_F()
72 TensorShape y_shape({1, 2, 2, 3}); in TEST_F() local
73 RunTest(xs, {x_shape, x_shape}, {y}, {y_shape}); in TEST_F()
107 TensorShape y_shape = TensorShape({5, 1}); in TEST_F() local
108 RunTest({x}, {x_shape}, y.output, {y_shape, y_shape}); in TEST_F()
114 TensorShape y_shape({2, 5, 3}); in TEST_F() local
116 RunTest(x, x_shape, y, y_shape); in TEST_F()
[all …]
Dnn_grad_test.cc55 const TensorShape& y_shape) { in RunTest() argument
58 scope_, {x}, {x_shape}, {y}, {y_shape}, &max_error))); in RunTest()
63 const TensorShape& y_shape) { in RunTest() argument
66 scope_, x, x_init_value, y, y_shape, &max_error))); in RunTest()
212 TensorShape y_shape({1}); in TEST_F() local
215 RunTest(x, x_shape, y, y_shape); in TEST_F()
238 TensorShape y_shape({1, 1, 1, 1}); in TEST_F() local
246 RunTest(x, x_init_value, y, y_shape); in TEST_F()
251 TensorShape y_shape({1, 1, 1, 1}); in TEST_F() local
259 RunTest(x, x_init_value, y, y_shape); in TEST_F()
[all …]
Dmath_grad_test.cc581 TensorShape y_shape = shapes[1]; in TestMatMulGrad() local
586 Placeholder(root_, DataTypeToEnum<T>::v(), Placeholder::Shape(y_shape)); in TestMatMulGrad()
596 root_, {x, y}, {x_shape, y_shape}, {z}, {z_shape}, &max_error))); in TestMatMulGrad()
619 TensorShape y_shape; in RandMatMulShapes() local
622 y_shape = ty ? TensorShape({b, n, k}) : TensorShape({b, k, n}); in RandMatMulShapes()
625 y_shape = ty ? TensorShape({n, k}) : TensorShape({k, n}); in RandMatMulShapes()
627 shapes->push_back(y_shape); in RandMatMulShapes()
723 const TensorShape& y_shape) { in RunTest() argument
727 scope_, x, x_init_value, y, y_shape, &max_error))); in RunTest()
739 TensorShape y_shape({2, 5}); in TEST_F() local
[all …]
Dimage_grad_test.cc54 void MakeOp(const OpType op_type, const Tensor& x_data, const Input& y_shape, in MakeOp() argument
61 scope_, *x, y_shape, in MakeOp()
65 *y = ResizeBilinear(scope_, *x, y_shape, in MakeOp()
70 *y = ResizeBicubic(scope_, *x, y_shape, in MakeOp()
199 void MakeOp(const Tensor& x_data, const Input& y_shape, Input scale, in MakeOp() argument
203 *y = ScaleAndTranslate(scope_, *x, y_shape, scale, translation, in MakeOp()
Ddata_flow_grad_test.cc67 TensorShape y_shape({3, 2}); in TEST_F() local
68 RunTest(data, {d1_shape, d2_shape}, {y}, {y_shape}); in TEST_F()
/external/tensorflow/tensorflow/compiler/tests/
Dconv3d_test.py77 y_shape = [2, 5, 6, 4, 2]
87 x, f, y_shape, strides=strides, padding="SAME")
105 for w in xrange(y_shape[3]):
106 for h in xrange(y_shape[2]):
107 for d in xrange(y_shape[1]):
108 d_in = d > 0 and d < y_shape[1] - 1
109 h_in = h > 0 and h < y_shape[2] - 1
110 w_in = w > 0 and w < y_shape[3] - 1
127 y_shape = [2, 10, 12, 8, 2]
137 x, f, y_shape, strides=strides, padding="SAME")
[all …]
/external/tensorflow/tensorflow/python/ops/
Dgradient_checker.py134 def _compute_numeric_jacobian(x, x_shape, x_data, y, y_shape, delta, argument
169 y_size = _product(y_shape) * (2 if y.dtype.is_complex else 1)
195 def _compute_dx_and_dy(x, y, y_shape): argument
202 dy_orig = constant_op.constant(1.0, shape=y_shape, dtype=y.dtype)
214 y_shape, argument
238 x, x_shape, x_data, dy, y_shape, dx, extra_feed_dict=extra_feed_dict)
240 x, x_shape, x_data, y, y_shape, delta, extra_feed_dict=extra_feed_dict)
247 y_shape, argument
254 dx, dy = zip(*[_compute_dx_and_dy(xi, y, y_shape) for xi in x])
262 ret = [_compute_gradient(xi, x_shapei, dxi, y, y_shape, dyi, x_init_valuei,
[all …]
Dgradient_checker_v2.py126 def _compute_theoretical_jacobian(f, y_shape, y_dtype, xs, param): argument
154 y_size = _product(y_shape) * y_factor
163 dy_data = np.zeros(y_shape, dtype=y_dtype.as_numpy_dtype)
260 y_shape, argument
276 y_size = _product(y_shape)
277 jacob_t = _compute_theoretical_jacobian(f, y_shape, y_dtype,
Dimage_ops_test.py1526 y_shape, argument
1529 target_height, target_width, _ = y_shape
1531 y = np.array(y).reshape(y_shape)
1578 y_shape = [2, 3, 1]
1580 self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape)
1583 y_shape = [3, 2, 1]
1585 self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape)
1588 y_shape = [2, 3, 1]
1590 self._assertReturns(x, x_shape, offset_height, offset_width, y, y_shape)
1593 y_shape = [3, 2, 1]
[all …]
Dsparse_grad.py216 y_shape = math_ops.cast(array_ops.shape(y), dtypes.int64)
218 array_ops.size(x_shape) - array_ops.size(y_shape), 0)
220 [array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0)
238 sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))
/external/tensorflow/tensorflow/core/kernels/
Dquantized_mul_op_test.cc40 float x_max_value, const std::vector<int64>& y_shape, in TestMul() argument
56 Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); in TestMul()
88 const std::vector<int64>& y_shape) { in TestMulShape() argument
97 const size_t y_num_elements = TensorShape(y_shape).num_elements(); in TestMulShape()
111 Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); in TestMulShape()
133 TestMul(x_shape, x_values, x_min_value, x_max_value, y_shape, y_values, in TestMulShape()
138 const std::vector<int64>& y_shape, int64 iterations) { in TimeMul() argument
139 TestMulShape(x_shape, y_shape); in TimeMul()
148 Tensor y_quantized_tensor(DT_QUINT8, TensorShape(y_shape)); in TimeMul()
178 << TensorShape(y_shape).DebugString() in TimeMul()
Dquantized_add_op_test.cc40 float x_max_value, const std::vector<int64>& y_shape, in TestAdd() argument
56 Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); in TestAdd()
88 const std::vector<int64>& y_shape) { in TestAddShape() argument
97 const size_t y_num_elements = TensorShape(y_shape).num_elements(); in TestAddShape()
111 Tensor y_float_tensor(DT_FLOAT, TensorShape(y_shape)); in TestAddShape()
133 TestAdd(x_shape, x_values, x_min_value, x_max_value, y_shape, y_values, in TestAddShape()
138 const std::vector<int64>& y_shape, int64 iterations) { in TimeAdd() argument
139 TestAddShape(x_shape, y_shape); in TimeAdd()
148 Tensor y_quantized_tensor(DT_QUINT8, TensorShape(y_shape)); in TimeAdd()
178 << TensorShape(y_shape).DebugString() in TimeAdd()
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/bijectors/
Dfill_triangular_test.py57 y_shape = tensor_shape.TensorShape([5, 4, 3, 3])
63 self.assertAllEqual(y_.shape.as_list(), y_shape.as_list())
68 self.assertAllEqual(y_shape_.as_list(), y_shape.as_list())
69 x_shape_ = b.inverse_event_shape(y_shape)
74 self.assertAllEqual(y_shape_tensor, y_shape.as_list())
76 b.inverse_event_shape_tensor(y_shape.as_list()))
/external/tensorflow/tensorflow/cc/framework/
Dgradient_checker_test.cc127 TensorShape y_shape({3, 2}); in TEST() local
131 auto y = Const(scope, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}, y_shape); in TEST()
147 TensorShape y_shape = TensorShape({5, 1}); in TEST() local
150 scope, {x}, {x_shape}, y.output, {y_shape, y_shape}, &max_error))); in TEST()
162 TensorShape y_shape({2, 1, 2, 3}); in TEST() local
165 scope, xs, {x_shape, x_shape}, {y}, {y_shape}, &max_error))); in TEST()
Dgradient_checker.cc114 for (const auto& y_shape : y_shapes) { in ComputeTheoreticalJacobianTranspose() local
117 ops::Cast(scope, ops::Const(scope, 1.0, y_shape), ys[0].type())); in ComputeTheoreticalJacobianTranspose()
401 const TensorShape& y_shape, JAC_T* max_error) { in ComputeGradientError() argument
406 scope, {x}, {x_datas[0].shape()}, {y}, {y_shape}, &x_datas, max_error); in ComputeGradientError()
416 const Output& y, const TensorShape& y_shape, JAC_T* max_error);
/external/tensorflow/tensorflow/python/keras/utils/
Dkernelized_utils.py41 y_shape = y_matrix.shape
42 if y_shape[1] != x_shape[1]: # dimensions do not match.
45 'vs {}.'.format(y_shape[1], x_shape[1]))
48 array_ops.expand_dims(x_matrix, 1), [1, y_shape[0], 1])
/external/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/
Ddata_feeder.py48 def _get_in_out_shape(x_shape, y_shape, n_classes, batch_size=None): argument
51 x_shape, dict), y_shape is not None and isinstance(y_shape, dict)
68 if y_shape is None:
82 output_shape = out_el_shape(y_shape, n_classes)
88 for k, v in list(y_shape.items())])
358 y_shape = dict([(k, v.shape) for k, v in list(self._y.items())
362 x_shape, y_shape, n_classes, batch_size)
864 y_shape = (x_count, len(self._y.columns))
869 x_shape, y_shape, n_classes, batch_size)
/external/tensorflow/tensorflow/tools/api/golden/v1/
Dtensorflow.test.pbtxt29 …argspec: "args=[\'x\', \'x_shape\', \'y\', \'y_shape\', \'x_init_value\', \'delta\', \'init_target…
33 …argspec: "args=[\'x\', \'x_shape\', \'y\', \'y_shape\', \'x_init_value\', \'delta\', \'init_target…
/external/tensorflow/tensorflow/contrib/learn/python/learn/
Dmodels.py93 y_shape = y.get_shape()
94 if len(y_shape) == 1:
97 output_shape = y_shape[1]
/external/tensorflow/tensorflow/python/ops/ragged/
Dragged_tensor_shape_test.py374 y_shape = RaggedTensorDynamicShape.from_dim_sizes(y_dims)
376 result1 = ragged_tensor_shape.broadcast_dynamic_shape(x_shape, y_shape)
377 result2 = ragged_tensor_shape.broadcast_dynamic_shape(y_shape, x_shape)

12