/external/tensorflow/tensorflow/lite/tools/optimize/ |
D | quantization_utils_test.cc | 71 ASSERT_EQ(params.zero_point.size(), 1); in TEST() 75 int64_t zero_point = params.zero_point[0]; in TEST() local 78 EXPECT_EQ(zero_point, 0); in TEST() 94 ASSERT_EQ(params.zero_point.size(), 1); in TEST() 97 int64_t zero_point = params.zero_point[0]; in TEST() local 100 EXPECT_EQ(zero_point, -128); in TEST() 116 ASSERT_EQ(params.zero_point.size(), 1); in TEST() 119 int64_t zero_point = params.zero_point[0]; in TEST() local 122 EXPECT_EQ(zero_point, 127); in TEST() 137 ASSERT_EQ(params.zero_point.size(), 1); in TEST() [all …]
|
D | subgraph_quantizer.cc | 37 const std::vector<int64_t>& zero_point, in AddQuantizationParams() argument 44 if (zero_point.size() != scales.size()) { in AddQuantizationParams() 47 tensor->quantization->zero_point.assign(zero_point.begin(), zero_point.end()); in AddQuantizationParams() 119 std::vector<int64_t> zero_point(scales.size(), 0); in SymmetricPerChannelQuantizeTensor() local 120 return AddQuantizationParams(scales, zero_point, channel_dim_index, in SymmetricPerChannelQuantizeTensor() 189 std::vector<int64_t> zero_point(scales.size(), 0); in SymmetricPerChannelBiasQuantize() local 190 return AddQuantizationParams(scales, zero_point, channel_dim_index, in SymmetricPerChannelBiasQuantize() 289 input_tensor->quantization->zero_point.size() != 1) { in PropagateMinMaxForAvgAndMaxPool() 302 quant_params->zero_point.push_back(input_tensor->quantization->zero_point[0]); in PropagateMinMaxForAvgAndMaxPool() 327 output_tensor->quantization->zero_point = {-128}; in AsymmetricQuantizeSoftmax()
|
D | quantization_utils.cc | 65 int64_t zero_point; in GetAsymmetricQuantizationParams() local 67 zero_point = static_cast<int64_t>(quant_min); in GetAsymmetricQuantizationParams() 69 zero_point = static_cast<int64_t>(quant_max); in GetAsymmetricQuantizationParams() 71 zero_point = static_cast<int64_t>(std::round(zero_point_from_min)); in GetAsymmetricQuantizationParams() 76 quantization_params->zero_point = std::vector<int64_t>(1, zero_point); in GetAsymmetricQuantizationParams() 188 tensor->quantization->zero_point = std::vector<int64_t>(1, 0); in SymmetricQuantizeTensor()
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | kernel_util_test.cc | 162 input_params->zero_point = TfLiteIntArrayCreate(1); in TEST_F() 163 input_params->zero_point->data[0] = 5; in TEST_F() 184 filter_params->zero_point = TfLiteIntArrayCreate(3); in TEST_F() 185 filter_params->zero_point->data[0] = 0; in TEST_F() 186 filter_params->zero_point->data[1] = 0; in TEST_F() 187 filter_params->zero_point->data[2] = 0; in TEST_F() 205 bias_params->zero_point = TfLiteIntArrayCreate(3); in TEST_F() 206 bias_params->zero_point->data[0] = 11; in TEST_F() 207 bias_params->zero_point->data[1] = 12; in TEST_F() 208 bias_params->zero_point->data[2] = 15; in TEST_F() [all …]
|
D | test_util.h | 47 int32_t zero_point) { in Quantize() argument 53 std::round(zero_point + (f / scale)))))); in Quantize() 60 int32_t zero_point) { in Dequantize() argument 63 f.push_back(scale * (q - zero_point)); in Dequantize() 90 int32_t zero_point = 0, bool per_channel_quantization = false, 99 zero_point(zero_point), in type() 111 int32_t zero_point; member 182 auto q = Quantize<T>(data, t->params.scale, t->params.zero_point); in QuantizeAndPopulate() 241 int32_t GetZeroPoint(int id) { return tensor_data_.at(id).zero_point; } in GetZeroPoint() 356 int32_t zero_point = std::min( in QuantizationParams() local [all …]
|
D | pad.cc | 189 TF_LITE_ENSURE(context, op_context.output->params.zero_point >= in Eval() 191 TF_LITE_ENSURE(context, op_context.output->params.zero_point <= in Eval() 193 pad_value = static_cast<uint8_t>(op_context.output->params.zero_point); in Eval() 197 TF_LITE_ENSURE_EQ(context, op_context.output->params.zero_point, in Eval() 198 op_context.constant_values->params.zero_point); in Eval() 222 TF_LITE_ENSURE(context, op_context.output->params.zero_point >= in Eval() 224 TF_LITE_ENSURE(context, op_context.output->params.zero_point <= in Eval() 226 pad_value = static_cast<int8_t>(op_context.output->params.zero_point); in Eval() 230 TF_LITE_ENSURE_EQ(context, op_context.output->params.zero_point, in Eval() 231 op_context.constant_values->params.zero_point); in Eval()
|
D | sub.cc | 95 input1_quantization_params.zero_point >= integer_type_min); in Prepare8BitSubOp() 97 input1_quantization_params.zero_point <= integer_type_max); in Prepare8BitSubOp() 99 input2_quantization_params.zero_point >= integer_type_min); in Prepare8BitSubOp() 101 input2_quantization_params.zero_point <= integer_type_max); in Prepare8BitSubOp() 103 output_quantization_params.zero_point >= integer_type_min); in Prepare8BitSubOp() 105 output_quantization_params.zero_point <= integer_type_max); in Prepare8BitSubOp() 107 op_params->input1_offset = -input1_quantization_params.zero_point; in Prepare8BitSubOp() 108 op_params->input2_offset = -input2_quantization_params.zero_point; in Prepare8BitSubOp() 109 op_params->output_offset = output_quantization_params.zero_point; in Prepare8BitSubOp() 156 TF_LITE_ENSURE_EQ(context, input1->params.zero_point, 0); in PrepareInt16SubOp() [all …]
|
D | reduce.cc | 302 op_context.input->params.zero_point, op_context.input->params.scale, in EvalMean() 305 op_context.output->params.zero_point, in EvalMean() 324 GetTensorData<int8_t>(input), op_context.input->params.zero_point, in EvalMean() 327 op_context.output->params.zero_point); in EvalMean() 368 if (op_context.input->params.zero_point == in EvalMean() 369 op_context.output->params.zero_point && in EvalMean() 377 op_context.input->params.zero_point, in EvalMean() 381 op_context.output->params.zero_point, in EvalMean() 416 TF_LITE_ENSURE_EQ(context, op_context->input->params.zero_point, in EvalLogic() 417 op_context->output->params.zero_point); in EvalLogic() [all …]
|
D | l2norm.cc | 57 TF_LITE_ENSURE_EQ(context, output->params.zero_point, 128); in Prepare() 60 TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); in Prepare() 95 op_params.input_zero_point = input->params.zero_point; \ in Eval() 115 reference_integer_ops::L2Normalization(input->params.zero_point, outer_size, in Eval()
|
D | activations.cc | 68 TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); in CheckOutputQuantParams() 70 TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128); in CheckOutputQuantParams() 149 TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); in TanhPrepare() 150 TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); in TanhPrepare() 185 TF_LITE_ENSURE_EQ(context, output->params.zero_point, in SigmoidPrepare() 189 TF_LITE_ENSURE_EQ(context, output->params.zero_point, in SigmoidPrepare() 212 TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); in SigmoidPrepare() 213 TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); in SigmoidPrepare() 276 TF_LITE_ENSURE_EQ(context, output->params.zero_point, 255); in LogSoftmaxPrepare() 279 TF_LITE_ENSURE_EQ(context, output->params.zero_point, 127); in LogSoftmaxPrepare() [all …]
|
D | space_to_batch_nd.cc | 138 op_context.output->params.zero_point); in Eval() 141 op_context.output->params.zero_point); in Eval() 147 op_context.output->params.zero_point); in Eval() 150 op_context.output->params.zero_point); in Eval()
|
D | add.cc | 98 data->input1_offset = -input1->params.zero_point; in Prepare() 99 data->input2_offset = -input2->params.zero_point; in Prepare() 100 data->output_offset = output->params.zero_point; in Prepare() 139 TF_LITE_ENSURE_EQ(context, input1->params.zero_point, 0); in Prepare() 140 TF_LITE_ENSURE_EQ(context, input2->params.zero_point, 0); in Prepare() 141 TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); in Prepare()
|
D | concatenation.cc | 95 TF_LITE_ENSURE_EQ(context, t->params.zero_point, in Prepare() 96 output->params.zero_point); in Prepare() 131 op_params.input_zeropoint = all_inputs.zero_point(); \ in Eval() 134 op_params.output_zeropoint = output->params.zero_point; \ in Eval()
|
D | depthwise_conv.cc | 117 TF_LITE_ENSURE_EQ(context, bias->params.zero_point, 0); in Prepare() 229 auto input_offset = -input->params.zero_point; in EvalQuantized() 230 auto filter_offset = -filter->params.zero_point; in EvalQuantized() 231 auto output_offset = output->params.zero_point; in EvalQuantized() 281 op_params.input_offset = input->params.zero_point; in EvalQuantizedPerChannel() 283 op_params.output_offset = output->params.zero_point; in EvalQuantizedPerChannel()
|
D | dequantize_test.cc | 32 float scale, int32_t zero_point) { in DequantizeOpModel() argument 33 const TensorData input_tensor_data = {type, shape, 0, 0, scale, zero_point}; in DequantizeOpModel()
|
D | kernel_util.cc | 133 const auto zero_point = output->params.zero_point; in CalculateActivationRangeQuantizedImpl() local 135 auto quantize = [scale, zero_point](float f) { in CalculateActivationRangeQuantizedImpl() 136 return zero_point + static_cast<int32_t>(TfLiteRound(f / scale)); in CalculateActivationRangeQuantizedImpl()
|
/external/gemmlowp/doc/ |
D | quantization_example.cc | 66 std::uint8_t zero_point; member 110 result.zero_point = nudged_zero_point; in ChooseQuantizationParams() 138 const float transformed_val = qparams.zero_point + real_val / qparams.scale; in Quantize() 149 (*dst)[i] = qparams.scale * (quantized_val - qparams.zero_point); in Dequantize() 309 << ", zero_point = " << static_cast<float>(lhs_qparams.zero_point) in main() 313 << ", zero_point = " << static_cast<float>(rhs_qparams.zero_point) in main() 318 << static_cast<float>(result_qparams.zero_point) << std::endl; in main() 332 const int lhs_offset = -lhs_qparams.zero_point; in main() 333 const int rhs_offset = -rhs_qparams.zero_point; in main() 334 const int result_offset = result_qparams.zero_point; in main()
|
D | quantization.md | 80 In equation (1), plugging `real_value = 0` and `quantized_value = zero_point`, 84 0 = A * zero_point + B 90 zero_point = -B / A 95 `zero_point` can be exactly equal to it. Quite awkward! 98 `quantized_value = zero_point`, we get: 101 0 = C * (zero_point + D) 108 0 = zero_point + D 111 In other words, `D = -zero_point`. This suggests rewriting the quantization 116 real_value = scale * (quantized_value - zero_point) (3) 120 `-zero_point`. [all …]
|
/external/tensorflow/tensorflow/lite/experimental/c/ |
D | c_api_test.cc | 64 EXPECT_EQ(input_params.zero_point, 0); in TEST() 86 EXPECT_EQ(output_params.zero_point, 0); in TEST() 123 EXPECT_EQ(input_params.zero_point, 0); in TEST() 139 EXPECT_EQ(output_params.zero_point, 0); in TEST() 149 output_params.scale * (output[0] - output_params.zero_point); in TEST() 151 output_params.scale * (output[1] - output_params.zero_point); in TEST()
|
/external/tensorflow/tensorflow/lite/testdata/ |
D | add_quantized.json | 28 zero_point: [ 52 zero_point: [ 76 zero_point: [
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/integer_ops/ |
D | dequantize.h | 28 const int32 zero_point = op_params.zero_point; in Dequantize() local 34 const float result = static_cast<float>(scale * (val - zero_point)); in Dequantize()
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
D | quantization_util.cc | 148 scaled_val = quantization_params.zero_point; in QuantizeBuffer() 150 scaled_val = quantization_params.zero_point + inverse_scale * src_val; in QuantizeBuffer() 180 ArrayDataTypeName(array.data_type), quantization_params.zero_point, in QuantizeArray() 235 array.minmax->max, quantization_params.zero_point, in IsArrayQuantizedRangeSubset() 251 (quantized_min - quantization_params.zero_point) * in IsArrayQuantizedRangeSubset() 263 (quantized_max - quantization_params.zero_point) * in IsArrayQuantizedRangeSubset()
|
D | quantize.cc | 230 quantization_params->zero_point = 0; in ChooseQuantizationForOperatorInput() 257 ArrayDataTypeName(array.final_data_type), quantization_params->zero_point, in ChooseQuantizationForOperatorInput() 265 quantization_params.zero_point + real_value / quantization_params.scale; in IsExactlyRepresentable() 290 quantization_params->zero_point = qp.central_value; in ChooseHardcodedQuantizationForOperatorOutput() 305 quantization_params->zero_point = 0; in ChooseHardcodedQuantizationForOperatorOutput() 315 quantization_params->zero_point = qp.max_value; in ChooseHardcodedQuantizationForOperatorOutput() 328 quantization_params->zero_point = qp.central_value; in ChooseHardcodedQuantizationForOperatorOutput() 378 quantization_params->zero_point = input_quantization_params.zero_point; in ChooseQuantizationForOperatorOutput() 405 quantization_params->zero_point, quantization_params->scale); in ChooseQuantizationForOperatorOutput() 425 double min = (quantized_min - quantization_params.zero_point) * in FixMinMaxPostQuantization() [all …]
|
/external/tensorflow/tensorflow/lite/toco/tflite/ |
D | import.cc | 89 if (quantization->scale() && quantization->zero_point()) { in ImportTensors() 91 CHECK_EQ(1, quantization->zero_point()->Length()); in ImportTensors() 94 q.zero_point = quantization->zero_point()->Get(0); in ImportTensors()
|
/external/tensorflow/tensorflow/lite/c/ |
D | c_api_internal.c | 102 if (q_params->zero_point) { in TfLiteQuantizationFree() 103 TfLiteIntArrayFree(q_params->zero_point); in TfLiteQuantizationFree() 104 q_params->zero_point = NULL; in TfLiteQuantizationFree()
|