/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | detection_postprocess.mod.py | 20 i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors variable 26 Model("regular").Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, True, 3, 1… 45 i3: [ # six anchors in center-size encoding 71 i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors variable 77 Model().Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0… 96 i3: [ # six anchors in center-size encoding 122 i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors variable 128 Model().Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0… 147 i3: [ # six anchors in center-size encoding 173 i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors variable [all …]
|
D | generate_proposals.mod.py | 23 i3 = Input("anchors", "TENSOR_FLOAT32", "{2, 4}") # anchors variable 29 i1, i2, i3, i4, 4.0, 4.0, -1, -1, 0.30, 1.0, layout).To(o1, o2, o3) 34 i3: ("TENSOR_QUANT16_SYMM", 0.125, 0), 51 i3: [0, 1, 4, 3, 1, 0, 3, 4], # anchors 72 i3 = Input("anchors", "TENSOR_FLOAT32", "{4, 4}") # anchors variable 78 i1, i2, i3, i4, 10.0, 10.0, 32, 16, 0.20, 1.0, layout).To(o1, o2, o3) 83 i3: ("TENSOR_QUANT16_SYMM", 0.125, 0), 158 i3: [ # anchors
|
D | box_with_nms_limit_linear.mod.py | 20 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 1, 0.4, 1.0, 0.3).To(o1, o2, o… 78 i3: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # batch split 114 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 120 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 8, 1, 0.4, 0.5, 0.3).To(o1, o2, o3… 172 i3: [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] # batch split
|
D | box_with_nms_limit_gaussian.mod.py | 20 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 2, 0.4, 0.5, 0.3).To(o1, o2, o… 78 i3: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # batch split 116 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 122 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 2, 0.4, 0.5, 0.3).To(o1, o2, o3… 174 i3: [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] # batch split
|
D | box_with_nms_limit_hard.mod.py | 20 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 0, 0.4, 1.0, 0.3).To(o1, o2, o… 78 i3: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # batch split 107 i3 = Input("batchSplit", "TENSOR_INT32", "{19}") # batchSplit variable 113 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 0, 0.4, 0.5, 0.3).To(o1, o2, o3… 165 i3: [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] # batch split
|
D | div_v1_2.mod.py | 22 i3 = Output("op3", "TENSOR_FLOAT16", "{3}") variable 23 model = model.Operation("DIV", i1, i2, act).To(i3) 32 output0 = {i3: # output 0 44 i3 = Output("op3", "TENSOR_FLOAT16", "{2, 2}") variable 45 model = model.Operation("DIV", i1, i2, act).To(i3) 53 output0 = {i3: # output 0
|
D | mul_v1_2.mod.py | 22 i3 = Output("op3", "TENSOR_FLOAT16", "{3}") variable 23 model = model.Operation("MUL", i1, i2, act).To(i3) 32 output0 = {i3: # output 0 44 i3 = Output("op3", "TENSOR_FLOAT16", "{2, 2}") variable 45 model = model.Operation("MUL", i1, i2, act).To(i3) 53 output0 = {i3: # output 0
|
D | add_v1_2.mod.py | 22 i3 = Output("op3", "TENSOR_FLOAT16", "{3}") variable 23 model = model.Operation("ADD", i1, i2, act).To(i3) 32 output0 = {i3: # output 0 44 i3 = Output("op3", "TENSOR_FLOAT16", "{2, 2}") variable 45 model = model.Operation("ADD", i1, i2, act).To(i3) 53 output0 = {i3: # output 0
|
D | space_to_depth_v1_2.mod.py | 56 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 4, 4, 2}") variable 58 Model().Operation("SPACE_TO_DEPTH", i3, 2, layout).To(o3) 62 i3: ("TENSOR_QUANT8_ASYMM", 1.0, 0), 68 i3: [10, 20, 11, 21, 12, 22, 13, 23, 76 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8)
|
D | depth_to_space_v1_2.mod.py | 56 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 2, 2, 8}") variable 58 Model().Operation("DEPTH_TO_SPACE", i3, 2, layout).To(o3) 62 i3: ("TENSOR_QUANT8_ASYMM", 1.0, 0), 68 i3: [10, 20, 11, 21, 14, 24, 15, 25, 76 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8)
|
D | roi_pooling.mod.py | 116 i3 = Input("in", "TENSOR_FLOAT32", "{4, 4, 4, 1}") variable 119 Model().Operation("ROI_POOLING", i3, roi3, [2, 2, 2, 2, 2], 2, 2, 2.0, 1.0, layout).To(o3) 122 i3: ("TENSOR_QUANT8_ASYMM", 0.25, 128), 129 i3: [ 152 }).AddNchw(i3, o3, layout).AddVariations("relaxed", quant8, "float16")
|
D | space_to_batch_v1_2.mod.py | 57 i3 = Input("op1", "TENSOR_FLOAT32", "{1, 5, 2, 1}") variable 60 Model().Operation("SPACE_TO_BATCH_ND", i3, [3, 2], pad3, layout).To(o3) 64 i3: ("TENSOR_QUANT8_ASYMM", 0.5, 128), 70 i3: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 73 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8)
|
/frameworks/av/media/libstagefright/codecs/amrnb/enc/src/ |
D | s10_8pf.cpp | 568 Word16 i0, i1, i2, i3, i4, i5, i6, i7, i9; in search_10and8i40() local 638 for (i3 = ipos[3]; i3 < L_CODE; i3 += step) in search_10and8i40() 640 p_temp2 = &rr[i3][0]; in search_10and8i40() 641 s = (Word32) * (p_temp2 + i3) >> 1; in search_10and8i40() 644 *(p_temp1++) = ps0 + dn[i3]; in search_10and8i40() 672 for (i3 = ipos[3]; i3 < L_CODE; i3 += step) in search_10and8i40() 679 alp2 = (alp1 + p_temp2[i3]) >> 2; in search_10and8i40() 687 ib = i3; in search_10and8i40() 693 i3 = ib; in search_10and8i40() 711 s += (Word32) * (p_temp2 + i3); in search_10and8i40() [all …]
|
/frameworks/rs/ |
D | rsCppUtils.h | 174 static inline uint16_t rsBoxFilter565(uint16_t i1, uint16_t i2, uint16_t i3, uint16_t i4) { in rsBoxFilter565() argument 175 uint32_t r = ((i1 & 0x1f) + (i2 & 0x1f) + (i3 & 0x1f) + (i4 & 0x1f)); in rsBoxFilter565() 176 uint32_t g = ((i1 >> 5) & 0x3f) + ((i2 >> 5) & 0x3f) + ((i3 >> 5) & 0x3f) + ((i4 >> 5) & 0x3f); in rsBoxFilter565() 177 uint32_t b = ((i1 >> 11) + (i2 >> 11) + (i3 >> 11) + (i4 >> 11)); in rsBoxFilter565() 181 static inline uint32_t rsBoxFilter8888(uint32_t i1, uint32_t i2, uint32_t i3, uint32_t i4) { in rsBoxFilter8888() argument 182 uint32_t r = (i1 & 0xff) + (i2 & 0xff) + (i3 & 0xff) + (i4 & 0xff); in rsBoxFilter8888() 183 … uint32_t g = ((i1 >> 8) & 0xff) + ((i2 >> 8) & 0xff) + ((i3 >> 8) & 0xff) + ((i4 >> 8) & 0xff); in rsBoxFilter8888() 184 …uint32_t b = ((i1 >> 16) & 0xff) + ((i2 >> 16) & 0xff) + ((i3 >> 16) & 0xff) + ((i4 >> 16) & 0xff); in rsBoxFilter8888() 185 …uint32_t a = ((i1 >> 24) & 0xff) + ((i2 >> 24) & 0xff) + ((i3 >> 24) & 0xff) + ((i4 >> 24) & 0xff); in rsBoxFilter8888()
|
/frameworks/av/media/libstagefright/codecs/amrwbenc/src/asm/ARMV5E/ |
D | residu_asm_opt.s | 82 SMULTB r11, r5, r10 @i3(0) --- r11 = x[2] * a0 86 SMLABT r11, r5, r2, r11 @i3(1) --- r11 += x[1] * a0 89 SMLATB r11, r6, r2, r11 @i3(2) --- r11 += x[0] * a2 97 SMLABT r11, r6, r2, r11 @i3(3) --- r11 += x[-1] * a3 102 SMLATB r11,r7, r2, r11 @ i3 (4) 108 SMLABT r11,r7, r2, r11 @ i3 (5) 112 SMLATB r11,r8, r2, r11 @ i3 (6) 118 SMLABT r11,r8, r2, r11 @ i3 (7) 122 SMLATB r11,r9, r2, r11 @ i3 (8) 129 SMLABT r11,r9, r2, r11 @ i3 (9) [all …]
|
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
D | conv_1_h3_w2_SAME.mod.py | 7 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 8, 8, 1}") # output 0 variable 10 model = model.Operation("CONV_2D", i2, i0, i1, i4, i5, i6, i7).To(i3) 14 output0 = {i3: [1.85284, -0.0393656, -0.127353, 1.43115, -0.302294, -1.0402, 0.655023, -0.587614, 1… 18 output1 = {i3: [-0.000614278, -1.21221, 0.443861, 0.102117, -2.52714, 1.47489, 0.173474, -0.237577,…
|
D | conv_1_h3_w2_VALID.mod.py | 7 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 6, 7, 1}") # output 0 variable 10 model = model.Operation("CONV_2D", i2, i0, i1, i4, i5, i6, i7).To(i3) 14 output0 = {i3: [1.72003, 1.55816, 0.667546, 2.23663, 0.0661516, 0.290254, 0.770222, -1.58197, -0.85… 18 output1 = {i3: [1.28735, 1.91315, 2.51734, 0.375841, 0.637563, 2.653, 2.72959, 1.17389, -2.12119, 2…
|
D | conv_3_h3_w2_VALID.mod.py | 7 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 6, 7, 3}") # output 0 variable 10 model = model.Operation("CONV_2D", i2, i0, i1, i4, i5, i6, i7).To(i3) 14 output0 = {i3: [-0.186842, -1.87308, 1.21135, -0.385009, 1.72032, -1.56036, -1.23059, 1.23694, 0.00… 18 output1 = {i3: [1.06709, -1.16534, 1.52694, -0.797245, 0.802736, -0.997109, 2.2661, -1.45548, 2.155…
|
D | conv_3_h3_w2_SAME.mod.py | 7 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 8, 8, 3}") # output 0 variable 10 model = model.Operation("CONV_2D", i2, i0, i1, i4, i5, i6, i7).To(i3) 14 output0 = {i3: [-1.27853, 1.74987, -0.876718, 0.989692, 0.298548, 0.522103, -0.536896, -0.179382, -… 18 output1 = {i3: [0.78574, 0.0700466, -0.110245, 0.0141003, -0.621007, -0.979104, 1.24104, 0.580398, …
|
D | depthwise_conv.mod.py | 8 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 8, 8, 3}") # output 0 variable 11 model = model.Operation("DEPTHWISE_CONV_2D", i2, i0, i1, i4, i5, i6, i7, i8).To(i3) 15 output0 = {i3: [0.840539, -0.301347, 0.754947, -0.14848, -0.40603, 0.294432, 0.130372, 0.11573, -0.… 19 output1 = {i3: [0.285357, 0.00181194, 0.453967, -0.160473, 0.133146, 0.125066, 0.695562, 0.406415, …
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
D | conv_1_h3_w2_VALID_relaxed.mod.py | 23 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 6, 7, 1}") # output 0 variable 26 model = model.Operation("CONV_2D", i2, i0, i1, i4, i5, i6, i7).To(i3) 31 output0 = {i3: [1.72003, 1.55816, 0.667546, 2.23663, 0.0661516, 0.290254, 0.770222, -1.58197, -0.85… 35 output1 = {i3: [1.28735, 1.91315, 2.51734, 0.375841, 0.637563, 2.653, 2.72959, 1.17389, -2.12119, 2…
|
D | conv_3_h3_w2_VALID_relaxed.mod.py | 23 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 6, 7, 3}") # output 0 variable 26 model = model.Operation("CONV_2D", i2, i0, i1, i4, i5, i6, i7).To(i3) 31 output0 = {i3: [-0.186842, -1.87308, 1.21135, -0.385009, 1.72032, -1.56036, -1.23059, 1.23694, 0.00… 35 output1 = {i3: [1.06709, -1.16534, 1.52694, -0.797245, 0.802736, -0.997109, 2.2661, -1.45548, 2.155…
|
D | conv_3_h3_w2_SAME_relaxed.mod.py | 23 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 8, 8, 3}") # output 0 variable 26 model = model.Operation("CONV_2D", i2, i0, i1, i4, i5, i6, i7).To(i3) 31 output0 = {i3: [-1.27853, 1.74987, -0.876718, 0.989692, 0.298548, 0.522103, -0.536896, -0.179382, -… 35 output1 = {i3: [0.78574, 0.0700466, -0.110245, 0.0141003, -0.621007, -0.979104, 1.24104, 0.580398, …
|
D | conv_1_h3_w2_SAME_relaxed.mod.py | 23 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 8, 8, 1}") # output 0 variable 26 model = model.Operation("CONV_2D", i2, i0, i1, i4, i5, i6, i7).To(i3) 31 output0 = {i3: [1.85284, -0.0393656, -0.127353, 1.43115, -0.302294, -1.0402, 0.655023, -0.587614, 1… 35 output1 = {i3: [-0.000614278, -1.21221, 0.443861, 0.102117, -2.52714, 1.47489, 0.173474, -0.237577,…
|
D | depthwise_conv_relaxed.mod.py | 24 i3 = Output("op3", "TENSOR_FLOAT32", "{1, 8, 8, 3}") # output 0 variable 27 model = model.Operation("DEPTHWISE_CONV_2D", i2, i0, i1, i4, i5, i6, i7, i8).To(i3) 32 output0 = {i3: [0.840539, -0.301347, 0.754947, -0.14848, -0.40603, 0.294432, 0.130372, 0.11573, -0.… 36 output1 = {i3: [0.285357, 0.00181194, 0.453967, -0.160473, 0.133146, 0.125066, 0.695562, 0.406415, …
|