/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | concat_mixed_quant.mod.py | 21 input2 = Input("input2", "TENSOR_FLOAT32", "{2, 1, 2}") variable 26 model = Model().Operation("CONCATENATION", input0, input1, input2, input3, axis).To(output0) 32 input2: [1.2, -3.2, -4.2, 7.2], 38 input2: ["TENSOR_QUANT8_ASYMM", 0.089, 123], 47 input2: [1.2, -3.2, -4.2, 7.2], 53 input2: ["TENSOR_QUANT8_ASYMM", 0.089, 123],
|
D | select_v1_2.mod.py | 16 def test(name, input0, input1, input2, output0, input0_data, input1_data, input2_data, output_data): argument 17 model = Model().Operation("SELECT", input0, input1, input2).To(output0) 20 input2: ["TENSOR_QUANT8_ASYMM", 0.5, 127], 26 input2: input2_data, 34 input2=Input("input2", "TENSOR_FLOAT32", "{3}"), 46 input2=Input("input2", "TENSOR_FLOAT32", "{2, 2}"), 58 input2=Input("input2", "TENSOR_FLOAT32", "{2, 1, 2, 1, 2}"),
|
D | concat_float16_2.mod.py | 26 input2 = Input("input2", "TENSOR_FLOAT16", "{%d, %d}" % (row2, col)) # input tensor 2 variable 29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output) 36 input2: input2_values}
|
D | concat_float16_3.mod.py | 26 input2 = Input("input2", "TENSOR_FLOAT16", "{%d, %d}" % (row, col2)) # input tensor 2 variable 29 model = model.Operation("CONCATENATION", input1, input2, axis1).To(output) 35 input2: input2_values}
|
/frameworks/ml/nn/runtime/test/generated/models/ |
D | concat_mixed_quant.model.cpp | 13 auto input2 = model->addOperand(&type5); in CreateModel_quant8() local 20 …model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {outpu… in CreateModel_quant8() 23 {input0, input1, input2, input3}, in CreateModel_quant8() 43 auto input2 = model->addOperand(&type5); in CreateModel_dynamic_output_shape_quant8() local 50 …model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {outpu… in CreateModel_dynamic_output_shape_quant8() 53 {input0, input1, input2, input3}, in CreateModel_dynamic_output_shape_quant8() 73 auto input2 = model->addOperand(&type5); in CreateModel_quant8_2() local 80 …model->addOperation(ANEURALNETWORKS_CONCATENATION, {input0, input1, input2, input3, param}, {outpu… in CreateModel_quant8_2() 83 {input0, input1, input2, input3}, in CreateModel_quant8_2() 103 auto input2 = model->addOperand(&type5); in CreateModel_dynamic_output_shape_quant8_2() local [all …]
|
D | concat_float_3.model.cpp | 10 auto input2 = model->addOperand(&type1); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 36 auto input2 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_quant8_3.model.cpp | 10 auto input2 = model->addOperand(&type1); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 36 auto input2 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float16_2.model.cpp | 10 auto input2 = model->addOperand(&type1); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 36 auto input2 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float_2.model.cpp | 10 auto input2 = model->addOperand(&type1); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 36 auto input2 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float16_3.model.cpp | 10 auto input2 = model->addOperand(&type1); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 36 auto input2 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_quant8_2.model.cpp | 10 auto input2 = model->addOperand(&type1); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 36 auto input2 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 42 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape() 45 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float_3_relaxed.model.cpp | 10 auto input2 = model->addOperand(&type1); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 38 auto input2 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 44 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output}); in CreateModel_dynamic_output_shape() 47 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | concat_float_2_relaxed.model.cpp | 10 auto input2 = model->addOperand(&type1); in CreateModel() local 16 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel() 19 {input1, input2}, in CreateModel() 38 auto input2 = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 44 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis0}, {output}); in CreateModel_dynamic_output_shape() 47 {input1, input2}, in CreateModel_dynamic_output_shape()
|
D | select_v1_2.model.cpp | 9 auto input2 = model->addOperand(&type1); in CreateModel() local 12 model->addOperation(ANEURALNETWORKS_SELECT, {input0, input1, input2}, {output0}); in CreateModel() 15 {input0, input1, input2}, in CreateModel() 31 auto input2 = model->addOperand(&type6); in CreateModel_int32() local 34 model->addOperation(ANEURALNETWORKS_SELECT, {input0, input1, input2}, {output0}); in CreateModel_int32() 37 {input0, input1, input2}, in CreateModel_int32() 53 auto input2 = model->addOperand(&type7); in CreateModel_float16() local 56 model->addOperation(ANEURALNETWORKS_SELECT, {input0, input1, input2}, {output0}); in CreateModel_float16() 59 {input0, input1, input2}, in CreateModel_float16() 75 auto input2 = model->addOperand(&type1); in CreateModel_relaxed() local [all …]
|
D | topk_v2.model.cpp | 326 auto input2 = model->addOperand(&type4); in CreateModel_3() local 333 model->addOperation(ANEURALNETWORKS_TOPK_V2, {input2, k2}, {out_values2, out_indices2}); in CreateModel_3() 336 {input2}, in CreateModel_3() 352 auto input2 = model->addOperand(&type4); in CreateModel_relaxed_3() local 359 model->addOperation(ANEURALNETWORKS_TOPK_V2, {input2, k2}, {out_values2, out_indices2}); in CreateModel_relaxed_3() 362 {input2}, in CreateModel_relaxed_3() 380 auto input2 = model->addOperand(&type16); in CreateModel_float16_3() local 387 model->addOperation(ANEURALNETWORKS_TOPK_V2, {input2, k2}, {out_values2, out_indices2}); in CreateModel_float16_3() 390 {input2}, in CreateModel_float16_3() 406 auto input2 = model->addOperand(&type4); in CreateModel_dynamic_output_shape_3() local [all …]
|
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
D | concat_float_2.mod.py | 26 input2 = Input("input2", "TENSOR_FLOAT32", "{%d, %d}" % (row2, col)) # input tensor 2 variable 29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output) 36 input2: input2_values}
|
D | concat_quant8_2.mod.py | 26 input2 = Input("input2", "TENSOR_QUANT8_ASYMM", "{%d, %d}, 0.5f, 0" % (row2, col)) variable 29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output) 36 input2: input2_values}
|
D | concat_float_3.mod.py | 26 input2 = Input("input2", "TENSOR_FLOAT32", "{%d, %d}" % (row, col2)) # input tensor 2 variable 29 model = model.Operation("CONCATENATION", input1, input2, axis1).To(output) 35 input2: input2_values}
|
D | concat_quant8_3.mod.py | 26 input2 = Input("input2", "TENSOR_QUANT8_ASYMM", "{%d, %d}, 0.5f, 0" % (row, col2)) variable 29 model = model.Operation("CONCATENATION", input1, input2, axis1).To(output) 35 input2: input2_values}
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
D | concat_float_2_relaxed.mod.py | 26 input2 = Input("input2", "TENSOR_FLOAT32", "{%d, %d}" % (row2, col)) # input tensor 2 variable 29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output) 37 input2: input2_values}
|
D | concat_float_3_relaxed.mod.py | 26 input2 = Input("input2", "TENSOR_FLOAT32", "{%d, %d}" % (row, col2)) # input tensor 2 variable 29 model = model.Operation("CONCATENATION", input1, input2, axis1).To(output) 36 input2: input2_values}
|
/frameworks/ml/nn/runtime/test/ |
D | TestIntrospectionControl.cpp | 230 float input2[2] = {3.0f, 4.0f}; in TEST_F() local 234 EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)), in TEST_F() 243 EXPECT_EQ(output[0], input1[0] + input2[0]); in TEST_F() 244 EXPECT_EQ(output[1], input1[1] + input2[1]); in TEST_F() 577 float input2[2] = {3.0f, 4.0f}; in TEST_P() local 581 EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)), in TEST_P() 837 float input2[2] = {3.0f, 4.0f}; in TEST_F() local 841 EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)), in TEST_F() 848 EXPECT_EQ(output[0], kSimpleMultiplier * (input1[0] + input2[0])); in TEST_F() 849 EXPECT_EQ(output[1], kSimpleMultiplier * (input1[1] + input2[1])); in TEST_F()
|
/frameworks/base/opengl/java/android/opengl/ |
D | GLLogWrapper.java | 934 ByteBuffer input2 = (ByteBuffer) input; in toByteBuffer() local 935 int position = input2.position(); in toByteBuffer() 937 byteCount = input2.limit() - position; in toByteBuffer() 939 result = ByteBuffer.allocate(byteCount).order(input2.order()); in toByteBuffer() 941 result.put(input2.get()); in toByteBuffer() 943 input2.position(position); in toByteBuffer() 945 CharBuffer input2 = (CharBuffer) input; in toByteBuffer() local 946 int position = input2.position(); in toByteBuffer() 948 byteCount = (input2.limit() - position) * 2; in toByteBuffer() 950 result = ByteBuffer.allocate(byteCount).order(input2.order()); in toByteBuffer() [all …]
|
/frameworks/av/services/audiopolicy/common/managerdefinitions/src/ |
D | AudioProfile.cpp | 409 const T& input1, const T& input2, const Order& order) in intersectFilterAndOrder() argument 412 std::set<typename T::value_type> set2{input2.begin(), input2.end()}; in intersectFilterAndOrder() 427 const T& input1, const T& input2, Compare comp) in intersectAndOrder() argument 430 std::set<typename T::value_type, Compare> set2{input2.begin(), input2.end(), comp}; in intersectAndOrder()
|
/frameworks/ml/nn/common/operations/ |
D | LogicalAndOr.cpp | 74 Shape input2 = context->getInputShape(kInputTensor2); in prepare() local 76 NN_RET_CHECK(calculateBroadcastedShape(input1, input2, &output)); in prepare()
|