/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | bidirectional_sequence_rnn.mod.py | 83 max_time = 16 variable 210 num_batches, max_time, input_size)), 234 num_batches, max_time, fw_num_units)), 237 num_batches, max_time, bw_num_units)), 260 max_time, num_batches, input_size)), 284 max_time, num_batches, fw_num_units)), 287 max_time, num_batches, bw_num_units)), 292 [num_batches, max_time, input_size]), 305 [num_batches, max_time, fw_num_units]), 307 [num_batches, max_time, bw_num_units]), [all …]
|
D | unidirectional_sequence_rnn.mod.py | 39 def convert_to_time_major(tensor, num_batches, max_time, input_size): argument 40 return np.array(tensor).reshape([num_batches, max_time, 45 max_time = 16 variable 142 num_batches, max_time, input_size)), 151 num_batches, max_time, num_units)), 164 max_time, num_batches, input_size)), 173 max_time, num_batches, num_units)), 176 input_data=convert_to_time_major(input_data, num_batches, max_time, 182 output_data=convert_to_time_major(output_data, num_batches, max_time,
|
D | unidirectional_sequence_lstm_batch_major_peephole_projection_bias.mod.py | 24 max_time = 4 variable 30 input = Input("input", "TENSOR_FLOAT32", "{%d, %d, %d}" % (n_batch, max_time, n_input)) 86 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (n_batch, max_time, n_output))
|
D | unidirectional_sequence_lstm_layer_norm_cifg_peephole.mod.py | 23 max_time = 3 variable 30 input = Input("input", "TENSOR_FLOAT32", "{%d, %d, %d}" % (max_time, n_batch, n_input)) 90 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (max_time, n_batch, n_output))
|
D | unidirectional_sequence_lstm_norm_peephole_projection.mod.py | 23 max_time = 3 variable 30 input = Input("input", "TENSOR_FLOAT32", "{%d, %d, %d}" % (max_time, n_batch, n_input)) 90 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (max_time, n_batch, n_output))
|
D | unidirectional_sequence_lstm_batch_major_norm_peephole_projection.mod.py | 23 max_time = 3 variable 30 input = Input("input", "TENSOR_FLOAT32", "{%d, %d, %d}" % (n_batch, max_time, n_input)) 90 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (n_batch, max_time, n_output))
|
D | unidirectional_sequence_lstm_1step.mod.py | 23 max_time = 1 variable 30 input = Input("input", "TENSOR_FLOAT32", "{%d, %d, %d}" % (max_time, n_batch, n_input)) 90 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (max_time, n_batch, n_output))
|
D | unidirectional_sequence_lstm_f16_batch_major.mod.py | 24 max_time = 3 variable 31 input = Input("input", "TENSOR_FLOAT16", "{%d, %d, %d}" % (n_batch, max_time, n_input)) 91 output = Output("output", "TENSOR_FLOAT16", "{%d, %d, %d}" % (n_batch, max_time, n_output))
|
D | unidirectional_sequence_lstm_f16_norm_peephole_projection.mod.py | 23 max_time = 3 variable 30 input = Input("input", "TENSOR_FLOAT16", "{%d, %d, %d}" % (max_time, n_batch, n_input)) 90 output = Output("output", "TENSOR_FLOAT16", "{%d, %d, %d}" % (max_time, n_batch, n_output))
|
D | unidirectional_sequence_lstm_cifg_peephole.mod.py | 23 max_time = 3 variable 30 input = Input("input", "TENSOR_FLOAT32", "{%d, %d, %d}" % (max_time, n_batch, n_input)) 90 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (max_time, n_batch, n_output))
|
D | bidirectional_sequence_lstm_norm_fw_output.mod.py | 25 max_time = 3 variable 27 input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 117 aux_input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 147 fw_output=Output("fw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_output… 148 bw_output=IgnoredOutput("bw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n… 431 bw_golden_output_data = [0 for _ in range(n_batch * max_time * n_output)]
|
D | bidirectional_sequence_lstm_float16_batch_major.mod.py | 24 max_time = 3 variable 26 input = Input("input", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_input)) 116 aux_input = Input("input", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_input)) 146 fw_output=Output("fw_output", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_output… 147 bw_output=Output("bw_output", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_output…
|
D | bidirectional_sequence_lstm.mod.py | 24 max_time = 3 variable 26 input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 116 aux_input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 146 fw_output=Output("fw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_output… 147 bw_output=Output("bw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_output…
|
D | bidirectional_sequence_lstm_cifg_peephole.mod.py | 24 max_time = 3 variable 26 input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 116 aux_input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 146 fw_output=Output("fw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_output… 147 bw_output=Output("bw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_output…
|
D | bidirectional_sequence_lstm_aux_input.mod.py | 26 max_time = 3 variable 28 input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 118 aux_input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 148 fw_output=Output("fw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_output… 149 bw_output=Output("bw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_output…
|
D | bidirectional_sequence_lstm_float16_batch_major_aux_input.mod.py | 27 max_time = 3 variable 29 input = Input("input", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_input)) 119 aux_input = Input("input", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_input)) 149 fw_output=Output("fw_output", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_output… 150 bw_output=Output("bw_output", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_output…
|
D | bidirectional_sequence_lstm_float16_batch_major_merge_outputs.mod.py | 25 max_time = 3 variable 27 input = Input("input", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_input)) 117 aux_input = Input("input", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time, n_input)) 147 fw_output=Output("fw_output", "TENSOR_FLOAT16", "{{{}, {}, {}}}".format(n_batch, max_time,
|
D | bidirectional_sequence_lstm_merge_outputs.mod.py | 25 max_time = 3 variable 27 input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 117 aux_input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) 147 fw_output=Output("fw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, 2 * n_ou…
|
/frameworks/base/cmds/incident_helper/testdata/ |
D | kernel_wakeups.txt | 1 name active_count event_count wakeup_count expire_count active_since total_time max_time last_chan…
|
/frameworks/ml/nn/common/operations/ |
D | BidirectionalSequenceLSTM.cpp | 166 const uint32_t max_time = SizeOfDimension(input_, params_.time_major ? 0 : 1); in Prepare() local 225 fwOutputShape->dimensions[0] = params_.time_major ? max_time : n_batch; in Prepare() 226 fwOutputShape->dimensions[1] = params_.time_major ? n_batch : max_time; in Prepare() 248 bwOutputShape->dimensions[0] = params_.time_major ? max_time : n_batch; in Prepare() 249 bwOutputShape->dimensions[1] = params_.time_major ? n_batch : max_time; in Prepare()
|
/frameworks/base/core/proto/android/os/ |
D | kernelwake.proto | 46 optional int64 max_time = 8; field
|