/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | detection_postprocess.mod.py | 24 o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out variable 26 …STPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, True, 3, 1, 1, 0.0, 0.5, False).To(o1, o2, o3, o4) 62 o3: [1, 0, 0], 75 o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out variable 77 …TPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0, 0.5, False).To(o1, o2, o3, o4) 113 o3: [1, 0, 0], 126 o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out variable 128 …TPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0, 0.5, False).To(o1, o2, o3, o4) 164 o3: [1, 0, 0], 177 o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out variable [all …]
|
D | l2_pool_v1_2.mod.py | 45 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 3}") variable 46 Model("large").Operation("L2_POOL_2D", i3, 0, 0, 0, 0, 1, 1, 2, 2, 0, layout).To(o3) 51 o3: [6.442049503326416, 7.3143692016601562, 8.2158384323120117] 52 }).AddNchw(i3, o3, layout).AddRelaxed().AddVariations("float16") 72 o3 = Output("out", "TENSOR_FLOAT32", "{0, 1, 1, 1}") # out variable 73 model = model.Operation("L2_POOL_2D", zero_sized, 0, 0, 0, 0, 1, 1, 2, 2, 0, layout).To(o3) 80 o3: [0], 81 }).AddNchw(i1, zero_sized, o3, layout).AddVariations("relaxed", "float16") 101 o3 = Output("out", "TENSOR_FLOAT32", "{0, 2, 2, 1}") # out variable 102 model = model.Operation("L2_POOL_2D", zero_sized, 1, 1, 1, 2, 2, 0, layout).To(o3) [all …]
|
D | resize_bilinear_v1_2.mod.py | 69 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") variable 70 model_shape = Model("shape").Operation("RESIZE_BILINEAR", i3, 3, 3).To(o3) 71 model_scale = Model("scale").Operation("RESIZE_BILINEAR", i3, 1.8, 1.8).To(o3) 76 o3: ("TENSOR_QUANT8_ASYMM", 0.01, 0) 81 o3: [1.0, 1.0, 1.0, 108 o3 = Output("out", "TENSOR_FLOAT32", "{0, 3, 3, 1}") # out variable 109 model = model.Operation("RESIZE_BILINEAR", zero_sized, 3, 3, layout).To(o3) 118 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 126 o3: [0], 127 }).AddNchw(i1, zero_sized, o3, layout).AddVariations("relaxed", quant8, "float16") [all …]
|
D | max_pool_v1_2.mod.py | 77 o3 = Output("op4", ("TENSOR_FLOAT32", [bat, output_row, output_col, chn])) variable 78 Model().Operation("MAX_POOL_2D", i3, pad, pad, pad, pad, std, std, flt, flt, 3, layout).To(o3) 83 o3: ("TENSOR_QUANT8_ASYMM", 0.25, 0) 89 o3: [6 for _ in range(bat * output_row * output_col * chn)] 90 }).AddNchw(i3, o3, layout).AddVariations("relaxed", quant8, "float16") 128 o3 = Output("out", "TENSOR_FLOAT32", "{0, 1, 1, 1}") # out variable 129 model = model.Operation("MAX_POOL_2D", zero_sized, 0, 0, 0, 0, 1, 1, 2, 2, 0, layout).To(o3) 138 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 146 o3: [0], 147 }).AddNchw(i1, zero_sized, o3, layout).AddVariations("relaxed", quant8, "float16") [all …]
|
D | avg_pool_v1_2.mod.py | 77 o3 = Output("op4", ("TENSOR_FLOAT32", [bat, output_row, output_col, chn])) variable 78 Model().Operation("AVERAGE_POOL_2D", i3, pad, pad, pad, pad, std, std, flt, flt, 0, layout).To(o3) 83 o3: ("TENSOR_QUANT8_ASYMM", 0.25, 0) 89 o3: [.5 for _ in range(bat * output_row * output_col * chn)] 90 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8) 156 o3 = Output("out", "TENSOR_FLOAT32", "{0, 1, 1, 1}") # out variable 157 model = model.Operation("AVERAGE_POOL_2D", zero_sized, 0, 0, 0, 0, 1, 1, 2, 2, 0, layout).To(o3) 166 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 174 o3: [0], 175 }).AddNchw(i1, zero_sized, o3, layout).AddVariations("relaxed", quant8, "float16") [all …]
|
D | concat_zero_sized.mod.py | 35 o3 = Output("out", "TENSOR_FLOAT32", "{0, 2, 2, 2}") # out variable 36 model = model.Operation("CONCATENATION", zero_sized, zero_sized, 3).To(o3) 45 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 53 o3: [0], 76 o3 = Output("out", "TENSOR_FLOAT32", "{1, 2, 2, 1}") # out variable 77 model = model.Operation("CONCATENATION", zero_sized, i2, 0).To(o3) 87 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 96 o3: [1, 2, 3, 4],
|
D | transpose_conv2d.mod.py | 105 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 4, 4, 1}") # output variable 106 Model().Operation("TRANSPOSE_CONV_2D", i3, w3, b3, s3, 1, 1, 1, 0, layout).To(o3) 113 o3: ("TENSOR_QUANT8_ASYMM", 16.0, 0) 119 o3: [184, 412, 568, 528, 123 }).AddNchw(i3, o3, s3, layout).AddVariations("relaxed", quant8, "float16").AddInput(w3, b3) 198 o3 = Output("out", "TENSOR_FLOAT32", "{0, 5, 5, 2}") # out variable 199 model = model.Operation("TRANSPOSE_CONV_2D", zero_sized, w, b, s, 2, 2, 2, 0, layout).To(o3) 210 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 218 o3: [0], 219 }).AddNchw(i1, zero_sized, o3, s, layout).AddVariations("relaxed", quant8, "float16") [all …]
|
D | conv2d_v1_2.mod.py | 79 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 3}") variable 80 Model("channel").Operation("CONV_2D", i3, f3, b3, 0, 0, 0, 0, 1, 1, 0, layout).To(o3) 87 o3: ("TENSOR_QUANT8_ASYMM", 0.5, 0) 93 o3: ("TENSOR_QUANT8_ASYMM", 0.5, 0) 99 o3: [15., 37.5, 60.] 100 }).AddNchw(i3, o3, layout).AddInput(f3, b3).AddVariations("relaxed", quant8, channelQuant8, "float1… 233 o3 = Output("out", "TENSOR_FLOAT32", "{0, 2, 2, 2}") # out variable 234 model = model.Operation("CONV_2D", zero_sized, w, b, 0, 0, 0, 0, 1, 1, 0, layout).To(o3) 245 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 253 o3: [0], [all …]
|
D | box_with_nms_limit_linear.mod.py | 24 o3 = Output("classesOut", "TENSOR_INT32", "{16}") # classes out variable 26 …= Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 1, 0.4, 1.0, 0.3).To(o1, o2, o3, o4) 104 o3: [1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2], 118 o3 = Output("classesOut", "TENSOR_INT32", "{15}") # classes out variable 120 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 8, 1, 0.4, 0.5, 0.3).To(o1, o2, o3… 197 o3: [1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2],
|
D | box_with_nms_limit_gaussian.mod.py | 24 o3 = Output("classesOut", "TENSOR_INT32", "{18}") # classes out variable 26 …= Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 2, 0.4, 0.5, 0.3).To(o1, o2, o3, o4) 106 o3: [1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2], 120 o3 = Output("classesOut", "TENSOR_INT32", "{10}") # classes out variable 122 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 2, 0.4, 0.5, 0.3).To(o1, o2, o3… 194 o3: [1, 1, 1, 2, 2, 1, 1, 1, 2, 2],
|
D | box_with_nms_limit_hard.mod.py | 24 o3 = Output("classesOut", "TENSOR_INT32", "{12}") # classes out variable 26 …= Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 0, 0.4, 1.0, 0.3).To(o1, o2, o3, o4) 97 o3: [1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2], 111 o3 = Output("classesOut", "TENSOR_INT32", "{10}") # classes out variable 113 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 0, 0.4, 0.5, 0.3).To(o1, o2, o3… 182 o3: [1, 1, 1, 2, 2, 1, 1, 1, 2, 2],
|
D | generate_proposals.mod.py | 27 o3 = Output("batchSplit", "TENSOR_INT32", "{4}") # batch split out variable 29 i1, i2, i3, i4, 4.0, 4.0, -1, -1, 0.30, 1.0, layout).To(o1, o2, o3) 63 o3: [0, 0, 0, 0] 76 o3 = Output("batchSplit", "TENSOR_INT32", "{30}") # batch split out variable 78 i1, i2, i3, i4, 10.0, 10.0, 32, 16, 0.20, 1.0, layout).To(o1, o2, o3) 205 o3: [
|
D | space_to_depth_v1_2.mod.py | 57 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 8}") variable 58 Model().Operation("SPACE_TO_DEPTH", i3, 2, layout).To(o3) 63 o3: ("TENSOR_QUANT8_ASYMM", 1.0, 0) 72 o3: [10, 20, 11, 21, 14, 24, 15, 25, 76 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8)
|
D | depth_to_space_v1_2.mod.py | 57 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 4, 4, 2}") variable 58 Model().Operation("DEPTH_TO_SPACE", i3, 2, layout).To(o3) 63 o3: ("TENSOR_QUANT8_ASYMM", 1.0, 0) 72 o3: [10, 20, 11, 21, 12, 22, 13, 23, 76 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8)
|
D | roi_pooling.mod.py | 118 o3 = Output("out", "TENSOR_FLOAT32", "{5, 2, 2, 1}") variable 119 Model().Operation("ROI_POOLING", i3, roi3, [2, 2, 2, 2, 2], 2, 2, 2.0, 1.0, layout).To(o3) 124 o3: ("TENSOR_QUANT8_ASYMM", 0.25, 128) 145 o3: [ 152 }).AddNchw(i3, o3, layout).AddVariations("relaxed", quant8, "float16")
|
D | space_to_batch_v1_2.mod.py | 59 o3 = Output("op4", "TENSOR_FLOAT32", "{6, 2, 2, 1}") variable 60 Model().Operation("SPACE_TO_BATCH_ND", i3, [3, 2], pad3, layout).To(o3) 65 o3: ("TENSOR_QUANT8_ASYMM", 0.5, 128) 71 o3: [0, 0, 0, 5, 0, 0, 0, 6, 0, 1, 0, 7, 73 }).AddNchw(i3, o3, layout).AddVariations("relaxed", "float16", quant8)
|
D | grouped_conv2d.mod.py | 108 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 6}") # output 0 variable 109 Model("channel").Operation("GROUPED_CONV_2D", i3, w3, b3, 1, 1, 1, 3, 0, layout).To(o3) 116 o3: ("TENSOR_QUANT8_ASYMM", 2.0, 60) 123 o3: ("TENSOR_QUANT8_ASYMM", 2.0, 60) 131 o3: [24, -16, 215, 338, 98, -51, 135 }).AddNchw(i3, o3, layout).AddVariations("relaxed", quant8, channelQuant8, "float16").AddInput(w3, …
|
D | resize_nearest_neighbor.mod.py | 206 o3 = Output("out", "TENSOR_FLOAT32", "{0, 3, 3, 1}") # out variable 207 model = model.Operation("RESIZE_NEAREST_NEIGHBOR", zero_sized, 3, 3, layout).To(o3) 216 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 224 o3: [0], 225 }).AddNchw(i1, zero_sized, o3, layout).AddVariations("relaxed", quant8, "float16") 245 o3 = Output("out", "TENSOR_FLOAT32", "{0, 3, 3, 1}") # out variable 246 model = model.Operation("RESIZE_NEAREST_NEIGHBOR", zero_sized, 1.6, 1.6, layout).To(o3) 255 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 263 o3: [0], 264 }).AddNchw(i1, zero_sized, o3, layout).AddVariations("relaxed", quant8, "float16")
|
D | depthwise_conv2d_per_channel.mod.py | 57 o3 = Output("op4", "TENSOR_QUANT8_ASYMM", "{1, 2, 2, 4}, 1.f, 128") variable 58 Model("layout").Operation("DEPTHWISE_CONV_2D", i3, f3, b3, 0, 0, 0, 0, 1, 1, 2, 0, layout).To(o3) 63 o3: [132, 130, 134, 131, 132, 130, 134, 131, 65 }).AddNchw(i3, o3, layout).AddInput(f3, b3)
|
D | transpose_v1_2.mod.py | 62 o3 = Output("out", "TENSOR_FLOAT32", "{0, 1, 2, 2}") # out variable 63 model = model.Operation("TRANSPOSE", zero_sized, [0, 3, 1, 2]).To(o3) 72 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 80 o3: [0],
|
D | depthwise_conv2d_v1_2.mod.py | 90 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 2}") variable 91 Model("large").Operation("DEPTHWISE_CONV_2D", i3, f3, b3, 0, 0, 0, 0, 1, 1, 1, 0, layout).To(o3) 98 o3: ("TENSOR_QUANT8_ASYMM", 2.0, 128) 104 o3: ("TENSOR_QUANT8_ASYMM", 2.0, 128) 110 o3: [110, 246] 111 }).AddNchw(i3, o3, layout).AddInput(f3, b3).AddVariations("relaxed", "float16", quant8, channelQuan…
|
D | conv2d_dilation.mod.py | 126 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") variable 127 Model().Operation("CONV_2D", i3, f3, b3, 1, 2, 2, 0, layout, 3, 3).To(o3) 134 o3: ("TENSOR_QUANT8_ASYMM", 0.125, 0) 145 o3: [16, 0, 9, 0, 0, 0, 4, 0, 1] 146 }).AddNchw(i3, o3, layout).AddInput(f3, b3).AddVariations("relaxed", quant8, "float16")
|
D | fully_connected_v1_2.mod.py | 65 o3 = Output("out", "TENSOR_FLOAT32", "{0, 1}") # out variable 66 model = model.Operation("FULLY_CONNECTED", zero_sized, w, b, 0).To(o3) 77 o3: ("TENSOR_QUANT8_ASYMM", 0.1, 128) 85 o3: [0],
|
/frameworks/ml/nn/tools/test_generator/tests/P_implicit_parameter/ |
D | mean_implicit.mod.py | 19 o3 = Output("o3", ("TENSOR_FLOAT32", [1])) # output for model3 variable 23 model3 = Model().Operation("MEAN", i0, [0, 1], 0).To(o3) # along both axis, keep_dim=False 28 outputs13 = {o3: [10]} 33 outputs23 = {o3: [-10]}
|
/frameworks/ml/nn/tools/test_generator/tests/P_vts_implicit_parameter/ |
D | mean_implicit.mod.py | 19 o3 = Output("o3", ("TENSOR_FLOAT32", [1])) # output for model3 variable 23 model3 = Model().Operation("MEAN", i0, [0, 1], 0).To(o3) # along both axis, keep_dim=False 28 outputs13 = {o3: [10]} 33 outputs23 = {o3: [-10]}
|