/frameworks/base/services/core/java/com/android/server/display/whitebalance/ |
D | AmbientFilter.java | 207 final float[] weights = getWeights(time, buffer); in filter() local 209 Slog.v(mTag, "filter: " + buffer + " => " + Arrays.toString(weights)); in filter() 211 for (int i = 0; i < weights.length; i++) { in filter() 213 final float weight = weights[i]; in filter() 230 float[] weights = new float[buffer.size()]; in getWeights() local 233 for (int i = 1; i < weights.length; i++) { in getWeights() 236 weights[i - 1] = weight; in getWeights() 241 weights[weights.length - 1] = lastWeight; in getWeights() 242 return weights; in getWeights()
|
/frameworks/ml/nn/common/operations/ |
D | QuantizedLSTM.cpp | 204 uint8_t* weights) { in assignWeightsSubmatrix() argument 210 weights[(row + offset_row) * weightsDims[1] + column + offset_column] = submatrixValues[i]; in assignWeightsSubmatrix() 264 auto checkWeightsShape = [&](const RunTimeOperandInfo* weights, uint32_t columns) -> bool { in prepare() argument 265 NN_RET_CHECK_EQ(NumDimensions(weights), 2); in prepare() 266 NN_RET_CHECK_EQ(SizeOfDimension(weights, 0), outputSize); in prepare() 267 NN_RET_CHECK_EQ(SizeOfDimension(weights, 1), columns); in prepare() 268 NN_RET_CHECK_EQ(weights->scale, weightsScale); in prepare() 269 NN_RET_CHECK_EQ(weights->zeroPoint, weightsZeroPoint); in prepare() 348 uint8_t* weights) { in concatenateWeights() argument 351 assignWeightsSubmatrix(inputToInputWeights_, 0 * outputSize, outputSize, weightsDims, weights); in concatenateWeights() [all …]
|
D | UnidirectionalSequenceRNN.cpp | 60 const T* weights = context->getInputBuffer<T>(kWeightsTensor); in executeTyped() local 100 RNN::RNNStep<T>(input, fixedTimeInputShape, hiddenState, bias, weights, weightsShape, in executeTyped() 133 Shape weights = context->getInputShape(kWeightsTensor); in prepare() local 144 const uint32_t numUnits = getSizeOfDimension(weights, 0); in prepare() 148 NN_RET_CHECK_EQ(getNumberOfDimensions(weights), 2); in prepare() 153 NN_RET_CHECK_EQ(inputSize, getSizeOfDimension(weights, 1)); in prepare()
|
/frameworks/base/libs/hwui/utils/ |
D | Blur.cpp | 61 void Blur::generateGaussianWeights(float* weights, float radius) { in generateGaussianWeights() argument 83 weights[r + intRadius] = coeff1 * pow(e, floatR * floatR * coeff2); in generateGaussianWeights() 84 normalizeFactor += weights[r + intRadius]; in generateGaussianWeights() 90 weights[r + intRadius] *= normalizeFactor; in generateGaussianWeights() 94 void Blur::horizontal(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest, in horizontal() argument 105 const float* gPtr = weights; in horizontal() 137 void Blur::vertical(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest, in vertical() argument 147 const float* gPtr = weights; in vertical()
|
D | Blur.h | 37 static void generateGaussianWeights(float* weights, float radius); 38 static void horizontal(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest, 40 static void vertical(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest,
|
/frameworks/ml/nn/runtime/test/generated/models/ |
D | rnn_state.model.cpp | 12 auto weights = model->addOperand(&type1); in CreateModel() local 22 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel() 25 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel() 45 auto weights = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 55 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel_dynamic_output_shape() 58 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel_dynamic_output_shape()
|
D | rnn.model.cpp | 12 auto weights = model->addOperand(&type1); in CreateModel() local 22 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel() 25 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel() 45 auto weights = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 55 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel_dynamic_output_shape() 58 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel_dynamic_output_shape()
|
D | rnn_state_relaxed.model.cpp | 12 auto weights = model->addOperand(&type1); in CreateModel() local 22 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel() 25 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel() 47 auto weights = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 57 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel_dynamic_output_shape() 60 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel_dynamic_output_shape()
|
D | rnn_float16.model.cpp | 12 auto weights = model->addOperand(&type1); in CreateModel() local 22 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel() 25 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel() 45 auto weights = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 55 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel_dynamic_output_shape() 58 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel_dynamic_output_shape()
|
D | rnn_relaxed.model.cpp | 12 auto weights = model->addOperand(&type1); in CreateModel() local 22 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel() 25 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel() 47 auto weights = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local 57 …model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in… in CreateModel_dynamic_output_shape() 60 {input, weights, recurrent_weights, bias, hidden_state_in}, in CreateModel_dynamic_output_shape()
|
D | unidirectional_sequence_rnn.model.cpp | 13 auto weights = model->addOperand(&type1); in CreateModel() local 25 …model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input, weights, recurrent_weight… in CreateModel() 28 {input, weights, recurrent_weights, bias, hidden_state}, in CreateModel() 48 auto weights = model->addOperand(&type1); in CreateModel_relaxed() local 60 …model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input, weights, recurrent_weight… in CreateModel_relaxed() 63 {input, weights, recurrent_weights, bias, hidden_state}, in CreateModel_relaxed() 85 auto weights = model->addOperand(&type14); in CreateModel_float16() local 97 …model->addOperation(ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN, {input, weights, recurrent_weight… in CreateModel_float16() 100 {input, weights, recurrent_weights, bias, hidden_state}, in CreateModel_float16() 120 auto weights = model->addOperand(&type1); in CreateModel_dynamic_output_shape() local [all …]
|
/frameworks/ml/nn/runtime/test/ |
D | TestMemory.cpp | 56 WrapperMemory weights(offsetForMatrix3 + sizeof(matrix3), PROT_READ, fd, 0); in TEST_F() local 57 ASSERT_TRUE(weights.isValid()); in TEST_F() 70 model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4)); in TEST_F() 71 model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4)); in TEST_F() 114 WrapperMemory weights(buffer); in TEST_F() local 115 ASSERT_TRUE(weights.isValid()); in TEST_F() 128 model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4)); in TEST_F() 129 model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4)); in TEST_F()
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | unidirectional_sequence_rnn.mod.py | 19 def test(name, input, weights, recurrent_weights, bias, hidden_state, argument 24 model = Model().Operation("UNIDIRECTIONAL_SEQUENCE_RNN", input, weights, 29 weights: weights_data, 143 weights=Input("weights", "TENSOR_FLOAT32", "{{{}, {}}}".format( 165 weights=Input("weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(
|
D | rnn_float16.mod.py | 24 weights = Input("weights", "TENSOR_FLOAT16", "{%d, %d}" % (units, input_size)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 38 weights: [
|
D | fully_connected_v1_2.mod.py | 20 weights = Parameter("op2", "TENSOR_FLOAT32", "{1, 1}", [2]) variable 24 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 28 weights: ("TENSOR_QUANT8_ASYMM", 0.5, 120),
|
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
D | fully_connected_float_large_weights_as_inputs.mod.py | 19 weights = Input("op2", "TENSOR_FLOAT32", "{1, 5}") # num_units = 1, input_size = 5 variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 28 weights:
|
D | fully_connected_quant8_weights_as_inputs.mod.py | 19 weights = Input("op2", "TENSOR_QUANT8_ASYMM", "{1, 1}, 0.5f, 0") variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 28 weights: [2],
|
D | fully_connected_quant8_large_weights_as_inputs.mod.py | 19 weights = Input("op2", "TENSOR_QUANT8_ASYMM", "{1, 5}, 0.2, 0") # num_units = 1, input_size = 5 variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 28 weights:
|
D | fully_connected_float_weights_as_inputs.mod.py | 19 weights = Input("op2", "TENSOR_FLOAT32", "{1, 1}") variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 28 weights: [2],
|
D | rnn_state.mod.py | 24 weights = Input("weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 38 weights: [
|
D | rnn.mod.py | 24 weights = Input("weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 38 weights: [
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
D | fully_connected_float_weights_as_inputs_relaxed.mod.py | 19 weights = Input("op2", "TENSOR_FLOAT32", "{1, 1}") variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 29 weights: [2],
|
D | fully_connected_float_large_weights_as_inputs_relaxed.mod.py | 19 weights = Input("op2", "TENSOR_FLOAT32", "{1, 5}") # num_units = 1, input_size = 5 variable 23 model = model.Operation("FULLY_CONNECTED", in0, weights, bias, act).To(out0) 29 weights:
|
D | rnn_state_relaxed.mod.py | 24 weights = Input("weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 39 weights: [
|
D | rnn_relaxed.mod.py | 24 weights = Input("weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 39 weights: [
|