/hardware/interfaces/neuralnetworks/1.1/ |
D | types.hal | 34 * dimensions of shape block_shape + [batch], interleaves these blocks back 35 * into the grid defined by the spatial dimensions [1, ..., M], to obtain a 63 * dimensions. The output is the result of dividing the first input tensor 66 * Two dimensions are compatible when: 71 * input operands. It starts with the trailing dimensions, and works its way 86 * * 1: A tensor of the same {@link OperandType}, and compatible dimensions 100 * Computes the mean of elements across dimensions of a tensor. 102 * Reduces the input tensor along the given dimensions to reduce. Unless 104 * in axis. If keep_dims is true, the reduced dimensions are retained with 115 * * 1: A 1-D Tensor of {@link OperandType::TENSOR_INT32}. The dimensions [all …]
|
/hardware/qcom/neuralnetworks/hvxservice/1.0/ |
D | HexagonModel.cpp | 38 .dimensions = operand.dimensions, in getOperandsInfo() 111 .dimensions = mOperands[operand].dimensions, in getShape() 121 mOperands[operand].dimensions = shape.dimensions; in setShape() 149 std::vector<uint32_t> dims = getAlignedDimensions(operand.dimensions, 4); in addOperand() 202 std::vector<uint32_t> dims = getAlignedDimensions(mOperands[operand].dimensions, 4); in createConvFilterTensor() 224 std::vector<uint32_t> dims = getAlignedDimensions(mOperands[operand].dimensions, 4); in createDepthwiseFilterTensor() 233 std::vector<uint32_t> dims = getAlignedDimensions(mOperands[operand].dimensions, 4); in createFullyConnectedWeightTensor() 298 outputs.push_back(make_hexagon_nn_output(operand.dimensions, getSize(operand.type))); in getHexagonOutputs() 429 make_hexagon_nn_output(mOperands[outputs[0]].dimensions, sizeof(uint8_t)); in addFusedQuant8Operation() 431 make_hexagon_nn_output(mOperands[outputs[0]].dimensions, sizeof(int32_t)); in addFusedQuant8Operation() [all …]
|
D | HexagonOperationsCheck.cpp | 86 HEXAGON_SOFT_ASSERT_NE(getPadding(inShape.dimensions[2], inShape.dimensions[1], in pool() 97 nn::calculateExplicitPadding(inShape.dimensions[2], stride_width, filter_width, in pool() 99 nn::calculateExplicitPadding(inShape.dimensions[1], stride_height, filter_height, in pool() 180 getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width, in conv_2d() 181 stride_height, filterShape.dimensions[2], filterShape.dimensions[1], in conv_2d() 189 nn::calculateExplicitPadding(inputShape.dimensions[2], stride_width, in conv_2d() 190 filterShape.dimensions[2], padding_implicit, &padding_left, in conv_2d() 192 nn::calculateExplicitPadding(inputShape.dimensions[1], stride_height, in conv_2d() 193 filterShape.dimensions[1], padding_implicit, &padding_top, in conv_2d() 240 getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width, in depthwise_conv_2d() [all …]
|
D | HexagonOperationsPrepare.cpp | 79 pad = getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width, in average_pool_2d() 115 const int32_t dims = model->getShape(ins[0]).dimensions.size(); in concatenation() 151 pad = getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width, in conv_2d() 152 stride_height, filterShape.dimensions[2], filterShape.dimensions[1], in conv_2d() 201 pad = getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width, in depthwise_conv_2d() 202 stride_height, filterShape.dimensions[2], filterShape.dimensions[1], in depthwise_conv_2d() 267 pad = getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width, in l2_pool_2d() 351 pad = getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width, in max_pool_2d() 534 pad = getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width, in average_pool_2d() 574 const int32_t dims = model->getShape(ins[0]).dimensions.size(); in concatenation() [all …]
|
D | HexagonUtils.cpp | 113 std::vector<uint32_t> dimensions(N - dims.size(), 1); in getAlignedDimensions() local 114 dimensions.insert(dimensions.end(), dims.begin(), dims.end()); in getAlignedDimensions() 115 return dimensions; in getAlignedDimensions() 281 ", .dimensions: " + toString(shape.dimensions.data(), shape.dimensions.size()) + in toString()
|
D | HexagonModel.h | 47 std::vector<uint32_t> dimensions; member
|
/hardware/interfaces/neuralnetworks/1.2/vts/functional/ |
D | ValidateModel.cpp | 114 .dimensions = {}, in addOperand() 186 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0); in mutateOperandRankTest() 287 newOperand.dimensions = hidl_vec<uint32_t>(); in mutateOperand() 294 newOperand.dimensions = in mutateOperand() 295 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1}); in mutateOperand() 300 newOperand.dimensions = in mutateOperand() 301 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1}); in mutateOperand() 308 newOperand.dimensions = in mutateOperand() 309 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1}); in mutateOperand() 313 newOperand.dimensions = in mutateOperand() [all …]
|
D | ValidateRequest.cpp | 201 .dimensions = {}, in createRequests() 223 .dimensions = {}, in createRequests()
|
D | CompilationCachingTests.cpp | 158 .dimensions = {}, in createLargeTestModelImpl() 195 .dimensions = {1}, in createLargeTestModelImpl() 207 .dimensions = {1}, in createLargeTestModelImpl() 233 .dimensions = {1}, in createLargeTestModelImpl()
|
/hardware/interfaces/neuralnetworks/1.0/vts/functional/ |
D | ValidateModel.cpp | 98 .dimensions = {}, in addOperand() 159 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0); in mutateOperandRankTest() 239 newOperand.dimensions = hidl_vec<uint32_t>(); in mutateOperand() 244 newOperand.dimensions = in mutateOperand() 245 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1}); in mutateOperand() 250 newOperand.dimensions = in mutateOperand() 251 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1}); in mutateOperand() 255 newOperand.dimensions = in mutateOperand() 256 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1}); in mutateOperand()
|
D | ValidateRequest.cpp | 125 .dimensions = {}, in createRequests() 147 .dimensions = {}, in createRequests()
|
D | GeneratedTestHarness.cpp | 167 .dimensions = {}, in EvaluatePreparedModel() 205 .dimensions = {}, in EvaluatePreparedModel() 349 dim = outputShapes[idx].dimensions; in EvaluatePreparedModel()
|
/hardware/interfaces/neuralnetworks/1.1/vts/functional/ |
D | ValidateModel.cpp | 114 .dimensions = {}, in addOperand() 175 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0); in mutateOperandRankTest() 255 newOperand.dimensions = hidl_vec<uint32_t>(); in mutateOperand() 260 newOperand.dimensions = in mutateOperand() 261 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1}); in mutateOperand() 266 newOperand.dimensions = in mutateOperand() 267 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1}); in mutateOperand() 271 newOperand.dimensions = in mutateOperand() 272 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1}); in mutateOperand()
|
D | ValidateRequest.cpp | 125 .dimensions = {}, in createRequests() 147 .dimensions = {}, in createRequests()
|
/hardware/interfaces/neuralnetworks/1.0/ |
D | types.hal | 26 * scalar values and must have no dimensions. 86 * dimensions. The output is the sum of both input tensors, optionally 89 * Two dimensions are compatible when: 94 * input operands. It starts with the trailing dimensions, and works its 111 * * 1: A tensor of the same {@link OperandType}, and compatible dimensions 127 * The output dimensions are functions of the filter dimensions, stride, and 199 * dimensions except the dimension along the concatenation axis. 230 * The output dimensions are functions of the filter dimensions, stride, and 321 * The output dimensions are functions of the filter dimensions, stride, and 408 * and width dimensions. The value block_size indicates the input block size [all …]
|
D | IPreparedModel.hal | 46 * tensor operands have fully specified dimensions, and the inputs
|
/hardware/interfaces/neuralnetworks/1.2/ |
D | types.hal | 91 * The size of the scales array must be equal to dimensions[channelDim]. 93 * The channel dimension of this tensor must not be unknown (dimensions[channelDim] != 0). 173 * dimensions. The output is the sum of both input tensors, optionally 176 * Two dimensions are compatible when: 181 * input operands. It starts with the trailing dimensions, and works its 203 * * 1: A tensor of the same {@link OperandType}, and compatible dimensions 219 * The output dimensions are functions of the filter dimensions, stride, and 302 * dimensions except the dimension along the concatenation axis. 337 * The output dimensions are functions of the filter dimensions, stride, and 487 * The output dimensions are functions of the filter dimensions, stride, and [all …]
|
D | IPreparedModel.hal | 51 * tensor operands have fully specified dimensions, and the inputs 94 * operands have fully specified dimensions, and the inputs to the function
|
/hardware/interfaces/camera/device/1.0/ |
D | ICameraDevicePreviewCallback.hal | 67 * Set the dimensions and format of future preview buffers.
|
/hardware/interfaces/graphics/bufferqueue/1.0/ |
D | IGraphicBufferProducer.hal | 257 * An error due to invalid dimensions might not be reported until 335 * 1) It is unnecessary to know the dimensions, format, or usage of the 425 * * crop rect is out of bounds of the buffer dimensions 573 * Allocates buffers based on the given dimensions/format. 577 * given format, dimensions, and usage bits, which are interpreted in the
|
/hardware/interfaces/graphics/bufferqueue/2.0/ |
D | IGraphicBufferProducer.hal | 125 * glGetIntegerv()). An error due to invalid dimensions may not be reported 128 * If `width` and `height` are both zero, the default dimensions shall be 532 * Allocates buffers based on the given dimensions, format and usage. 536 * given format, dimensions, and usage bits, which are interpreted in the
|
/hardware/interfaces/graphics/composer/2.1/ |
D | IComposerClient.hal | 354 * height equal to the active display configuration dimensions, 952 * origin is the top-left corner. They must not exceed the dimensions of 1010 * of the given layer. This frame must not exceed the display dimensions. 1050 * exceed the dimensions of the latched buffer. 1083 * and must not exceed the dimensions of the screen.
|
/hardware/interfaces/renderscript/1.0/ |
D | IContext.hal | 40 * the shape of the window. Any dimensions present in the type must be 41 * equal to or smaller than the dimensions in the source allocation. A 186 * dimensions of the Allocation. 1144 * @param dims Collection of dimensions
|
/hardware/interfaces/input/common/1.0/ |
D | types.hal | 687 * The array is a 2-D row-major matrix with dimensions (height, width). 714 * change), the frame's dimensions will become 6 x 10
|
/hardware/interfaces/graphics/composer/2.2/ |
D | IComposerClient.hal | 300 * height equal to the active display configuration dimensions,
|