/hardware/qcom/neuralnetworks/hvxservice/1.0/ |
D | HexagonModel.cpp | 35 const Operand& operand = model.operands[i]; in getOperandsInfo() local 37 .type = operand.type, in getOperandsInfo() 38 .dimensions = operand.dimensions, in getOperandsInfo() 39 .scale = operand.scale, in getOperandsInfo() 40 .zeroPoint = operand.zeroPoint, in getOperandsInfo() 41 .lifetime = operand.lifetime, in getOperandsInfo() 42 .buffer = const_cast<uint8_t*>(getData(operand, model.operandValues, pools)), in getOperandsInfo() 43 .length = operand.location.length, in getOperandsInfo() 104 const int32_t* Model::getPointer(uint32_t operand) { in getPointer() argument 105 return reinterpret_cast<const int32_t*>(mOperands[operand].buffer); in getPointer() [all …]
|
D | HexagonModel.h | 84 const int32_t* getPointer(uint32_t operand); 85 Shape getShape(uint32_t operand); 86 bool setShape(uint32_t operand, const Shape& shape); 87 bool isConstant(uint32_t operand); 90 const hexagon_nn_input& getTensor(uint32_t operand); 91 const hexagon_nn_input& getQuantizationMin(uint32_t operand); 92 const hexagon_nn_input& getQuantizationMax(uint32_t operand); 93 hexagon_nn_input createQuantizationValue(uint32_t operand, int32_t quant_value); 94 hexagon_nn_input createConvFilterTensor(uint32_t operand); 95 hexagon_nn_input createDepthwiseFilterTensor(uint32_t operand, int32_t depth_multiplier); [all …]
|
D | HexagonUtils.cpp | 152 const uint8_t* getData(const Operand& operand, const hidl_vec<uint8_t>& block, in getData() argument 154 switch (operand.lifetime) { in getData() 162 return getDataFromBlock(block, operand.location.offset, operand.location.length); in getData() 164 return getDataFromPool(pools[operand.location.poolIndex], operand.location.offset, in getData() 165 operand.location.length); in getData()
|
D | HexagonUtils.h | 78 const uint8_t* getData(const Operand& operand, const hidl_vec<uint8_t>& block,
|
/hardware/interfaces/neuralnetworks/1.0/vts/functional/ |
D | ValidateModel.cpp | 124 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandTypeTest() local 127 std::to_string(operand) + " set to value " + in mutateOperandTypeTest() 129 validate(device, message, model, [operand, invalidOperandType](Model* model) { in mutateOperandTypeTest() 130 model->operands[operand].type = static_cast<OperandType>(invalidOperandType); in mutateOperandTypeTest() 154 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandRankTest() local 155 const uint32_t invalidRank = getInvalidRank(model.operands[operand].type); in mutateOperandRankTest() 156 const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) + in mutateOperandRankTest() 158 validate(device, message, model, [operand, invalidRank](Model* model) { in mutateOperandRankTest() 159 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0); in mutateOperandRankTest() 183 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandScaleTest() local [all …]
|
/hardware/interfaces/neuralnetworks/1.2/vts/functional/ |
D | ValidateModel.cpp | 140 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandTypeTest() local 143 std::to_string(operand) + " set to value " + in mutateOperandTypeTest() 145 validate(device, message, model, [operand, invalidOperandType](Model* model) { in mutateOperandTypeTest() 146 model->operands[operand].type = static_cast<OperandType>(invalidOperandType); in mutateOperandTypeTest() 178 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandRankTest() local 179 const uint32_t invalidRank = getInvalidRank(model.operands[operand].type); in mutateOperandRankTest() 183 const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) + in mutateOperandRankTest() 185 validate(device, message, model, [operand, invalidRank](Model* model) { in mutateOperandRankTest() 186 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0); in mutateOperandRankTest() 218 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandScaleTest() local [all …]
|
/hardware/interfaces/neuralnetworks/1.1/vts/functional/ |
D | ValidateModel.cpp | 140 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandTypeTest() local 143 std::to_string(operand) + " set to value " + in mutateOperandTypeTest() 145 validate(device, message, model, [operand, invalidOperandType](Model* model) { in mutateOperandTypeTest() 146 model->operands[operand].type = static_cast<OperandType>(invalidOperandType); in mutateOperandTypeTest() 170 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandRankTest() local 171 const uint32_t invalidRank = getInvalidRank(model.operands[operand].type); in mutateOperandRankTest() 172 const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) + in mutateOperandRankTest() 174 validate(device, message, model, [operand, invalidRank](Model* model) { in mutateOperandRankTest() 175 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0); in mutateOperandRankTest() 199 for (size_t operand = 0; operand < model.operands.size(); ++operand) { in mutateOperandScaleTest() local [all …]
|
/hardware/interfaces/neuralnetworks/1.0/ |
D | types.hal | 22 * The type of an operand in a model. 1487 * How an operand is used. 1491 * The operand is internal to the model. It's created by an operation and 1492 * consumed by other operations. It must be an output operand of 1498 * The operand is an input of the model. It must not be an output 1499 * operand of any operation. 1501 * An operand can't be both input and output of a model. 1506 * The operand is an output of the model. It must be an output 1507 * operand of exactly one operation. 1509 * An operand can't be both input and output of a model. [all …]
|
/hardware/interfaces/neuralnetworks/1.2/ |
D | IExecutionCallback.hal | 43 * operand buffer is not large enough to store the 49 * of the output operand in the Request outputs vector.
|
D | types.hal | 44 * Values of this operand type are either true or false. A zero value 71 * Values of this operand type are either true or false. A zero value 152 * The range of operand values in the OperandType enum. 4755 * Performance of an operation comes from the type of its first operand. 4756 * This represents performance for non extension operand types. 4778 * Performance by operand type. Must be sorted by OperandType. 4812 * Parameters for TENSOR_QUANT8_SYMM_PER_CHANNEL operand. 4822 * Describes one operand of the model's graph. 4835 * Dimensions of the operand. 4837 * For a scalar operand, dimensions.size() must be 0. [all …]
|
D | IPreparedModel.hal | 114 * operand buffer is not large enough to store the 120 * of the output operand in the Request outputs vector.
|
/hardware/interfaces/neuralnetworks/1.1/ |
D | types.hal | 415 * The operations are sorted into execution order. Every operand 424 * Each value corresponds to the index of the operand in "operands". 431 * Each value corresponds to the index of the operand in "operands". 436 * A byte buffer containing operand data that were copied into the model. 438 * An operand's value must be located here if and only if Operand::lifetime 444 * A collection of shared memory pools containing operand values. 446 * An operand's value must be located here if and only if Operand::lifetime
|
/hardware/qcom/data/ipacfg-mgr/msm8998/ipacm/src/ |
D | Android.mk | 44 -Wno-constant-logical-operand \
|