• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "annotator/cached-features.h"
18 
19 #include "utils/base/logging.h"
20 #include "utils/tensor-view.h"
21 
22 namespace libtextclassifier3 {
23 
24 namespace {
25 
CalculateOutputFeaturesSize(const FeatureProcessorOptions * options,int feature_vector_size)26 int CalculateOutputFeaturesSize(const FeatureProcessorOptions* options,
27                                 int feature_vector_size) {
28   const bool bounds_sensitive_enabled =
29       options->bounds_sensitive_features() &&
30       options->bounds_sensitive_features()->enabled();
31 
32   int num_extracted_tokens = 0;
33   if (bounds_sensitive_enabled) {
34     const FeatureProcessorOptions_::BoundsSensitiveFeatures* config =
35         options->bounds_sensitive_features();
36     num_extracted_tokens += config->num_tokens_before();
37     num_extracted_tokens += config->num_tokens_inside_left();
38     num_extracted_tokens += config->num_tokens_inside_right();
39     num_extracted_tokens += config->num_tokens_after();
40     if (config->include_inside_bag()) {
41       ++num_extracted_tokens;
42     }
43   } else {
44     num_extracted_tokens = 2 * options->context_size() + 1;
45   }
46 
47   int output_features_size = num_extracted_tokens * feature_vector_size;
48 
49   if (bounds_sensitive_enabled &&
50       options->bounds_sensitive_features()->include_inside_length()) {
51     ++output_features_size;
52   }
53 
54   return output_features_size;
55 }
56 
57 }  // namespace
58 
Create(const TokenSpan & extraction_span,std::unique_ptr<std::vector<float>> features,std::unique_ptr<std::vector<float>> padding_features,const FeatureProcessorOptions * options,int feature_vector_size)59 std::unique_ptr<CachedFeatures> CachedFeatures::Create(
60     const TokenSpan& extraction_span,
61     std::unique_ptr<std::vector<float>> features,
62     std::unique_ptr<std::vector<float>> padding_features,
63     const FeatureProcessorOptions* options, int feature_vector_size) {
64   const int min_feature_version =
65       options->bounds_sensitive_features() &&
66               options->bounds_sensitive_features()->enabled()
67           ? 2
68           : 1;
69   if (options->feature_version() < min_feature_version) {
70     TC3_LOG(ERROR) << "Unsupported feature version.";
71     return nullptr;
72   }
73 
74   std::unique_ptr<CachedFeatures> cached_features(new CachedFeatures());
75   cached_features->extraction_span_ = extraction_span;
76   cached_features->features_ = std::move(features);
77   cached_features->padding_features_ = std::move(padding_features);
78   cached_features->options_ = options;
79 
80   cached_features->output_features_size_ =
81       CalculateOutputFeaturesSize(options, feature_vector_size);
82 
83   return cached_features;
84 }
85 
AppendClickContextFeaturesForClick(int click_pos,std::vector<float> * output_features) const86 void CachedFeatures::AppendClickContextFeaturesForClick(
87     int click_pos, std::vector<float>* output_features) const {
88   click_pos -= extraction_span_.first;
89 
90   AppendFeaturesInternal(
91       /*intended_span=*/ExpandTokenSpan(SingleTokenSpan(click_pos),
92                                         options_->context_size(),
93                                         options_->context_size()),
94       /*read_mask_span=*/{0, TokenSpanSize(extraction_span_)}, output_features);
95 }
96 
AppendBoundsSensitiveFeaturesForSpan(TokenSpan selected_span,std::vector<float> * output_features) const97 void CachedFeatures::AppendBoundsSensitiveFeaturesForSpan(
98     TokenSpan selected_span, std::vector<float>* output_features) const {
99   const FeatureProcessorOptions_::BoundsSensitiveFeatures* config =
100       options_->bounds_sensitive_features();
101 
102   selected_span.first -= extraction_span_.first;
103   selected_span.second -= extraction_span_.first;
104 
105   // Append the features for tokens around the left bound. Masks out tokens
106   // after the right bound, so that if num_tokens_inside_left goes past it,
107   // padding tokens will be used.
108   AppendFeaturesInternal(
109       /*intended_span=*/{selected_span.first - config->num_tokens_before(),
110                          selected_span.first +
111                              config->num_tokens_inside_left()},
112       /*read_mask_span=*/{0, selected_span.second}, output_features);
113 
114   // Append the features for tokens around the right bound. Masks out tokens
115   // before the left bound, so that if num_tokens_inside_right goes past it,
116   // padding tokens will be used.
117   AppendFeaturesInternal(
118       /*intended_span=*/{selected_span.second -
119                              config->num_tokens_inside_right(),
120                          selected_span.second + config->num_tokens_after()},
121       /*read_mask_span=*/{selected_span.first, TokenSpanSize(extraction_span_)},
122       output_features);
123 
124   if (config->include_inside_bag()) {
125     AppendBagFeatures(selected_span, output_features);
126   }
127 
128   if (config->include_inside_length()) {
129     output_features->push_back(
130         static_cast<float>(TokenSpanSize(selected_span)));
131   }
132 }
133 
AppendFeaturesInternal(const TokenSpan & intended_span,const TokenSpan & read_mask_span,std::vector<float> * output_features) const134 void CachedFeatures::AppendFeaturesInternal(
135     const TokenSpan& intended_span, const TokenSpan& read_mask_span,
136     std::vector<float>* output_features) const {
137   const TokenSpan copy_span =
138       IntersectTokenSpans(intended_span, read_mask_span);
139   for (int i = intended_span.first; i < copy_span.first; ++i) {
140     AppendPaddingFeatures(output_features);
141   }
142   output_features->insert(
143       output_features->end(),
144       features_->begin() + copy_span.first * NumFeaturesPerToken(),
145       features_->begin() + copy_span.second * NumFeaturesPerToken());
146   for (int i = copy_span.second; i < intended_span.second; ++i) {
147     AppendPaddingFeatures(output_features);
148   }
149 }
150 
AppendPaddingFeatures(std::vector<float> * output_features) const151 void CachedFeatures::AppendPaddingFeatures(
152     std::vector<float>* output_features) const {
153   output_features->insert(output_features->end(), padding_features_->begin(),
154                           padding_features_->end());
155 }
156 
AppendBagFeatures(const TokenSpan & bag_span,std::vector<float> * output_features) const157 void CachedFeatures::AppendBagFeatures(
158     const TokenSpan& bag_span, std::vector<float>* output_features) const {
159   const int offset = output_features->size();
160   output_features->resize(output_features->size() + NumFeaturesPerToken());
161   for (int i = bag_span.first; i < bag_span.second; ++i) {
162     for (int j = 0; j < NumFeaturesPerToken(); ++j) {
163       (*output_features)[offset + j] +=
164           (*features_)[i * NumFeaturesPerToken() + j] / TokenSpanSize(bag_span);
165     }
166   }
167 }
168 
NumFeaturesPerToken() const169 int CachedFeatures::NumFeaturesPerToken() const {
170   return padding_features_->size();
171 }
172 
173 }  // namespace libtextclassifier3
174