/external/python/google-api-python-client/docs/dyn/ |
D | analytics_v3.management.customDimensions.html | 79 <p class="firstline">Get a custom dimension to which the user has access.</p> 82 <p class="firstline">Create a new custom dimension.</p> 88 <p class="firstline">Updates an existing custom dimension. This method supports patch semantics.</p> 91 <p class="firstline">Updates an existing custom dimension.</p> 95 <pre>Get a custom dimension to which the user has access. 98 accountId: string, Account ID for the custom dimension to retrieve. (required) 99 webPropertyId: string, Web property ID for the custom dimension to retrieve. (required) 100 customDimensionId: string, The ID of the custom dimension to retrieve. (required) 105 { # JSON template for Analytics Custom Dimension. 106 "index": 42, # Index of the custom dimension. [all …]
|
D | dfareporting_v2_7.reports.compatibleFields.html | 93 { # Represents a sorted dimension. 95 "name": "A String", # The name of the dimension. 96 "sortOrder": "A String", # An optional sort order for the dimension column. 120 { # Represents a sorted dimension. 122 "name": "A String", # The name of the dimension. 123 "sortOrder": "A String", # An optional sort order for the dimension column. 129 "value": "A String", # The value of the dimension. 130 "dimensionName": "A String", # The name of the dimension. 139 "value": "A String", # The value of the dimension. 140 "dimensionName": "A String", # The name of the dimension. [all …]
|
D | dfareporting_v2_8.reports.compatibleFields.html | 93 { # Represents a sorted dimension. 95 "name": "A String", # The name of the dimension. 96 "sortOrder": "A String", # An optional sort order for the dimension column. 120 { # Represents a sorted dimension. 122 "name": "A String", # The name of the dimension. 123 "sortOrder": "A String", # An optional sort order for the dimension column. 129 "value": "A String", # The value of the dimension. 130 "dimensionName": "A String", # The name of the dimension. 139 "value": "A String", # The value of the dimension. 140 "dimensionName": "A String", # The name of the dimension. [all …]
|
D | dfareporting_v2_7.reports.html | 136 { # Represents a sorted dimension. 138 "name": "A String", # The name of the dimension. 139 "sortOrder": "A String", # An optional sort order for the dimension column. 163 { # Represents a sorted dimension. 165 "name": "A String", # The name of the dimension. 166 "sortOrder": "A String", # An optional sort order for the dimension column. 172 "value": "A String", # The value of the dimension. 173 "dimensionName": "A String", # The name of the dimension. 182 "value": "A String", # The value of the dimension. 183 "dimensionName": "A String", # The name of the dimension. [all …]
|
D | dfareporting_v2_8.reports.html | 136 { # Represents a sorted dimension. 138 "name": "A String", # The name of the dimension. 139 "sortOrder": "A String", # An optional sort order for the dimension column. 163 { # Represents a sorted dimension. 165 "name": "A String", # The name of the dimension. 166 "sortOrder": "A String", # An optional sort order for the dimension column. 172 "value": "A String", # The value of the dimension. 173 "dimensionName": "A String", # The name of the dimension. 182 "value": "A String", # The value of the dimension. 183 "dimensionName": "A String", # The name of the dimension. [all …]
|
D | analyticsreporting_v4.reports.html | 97 # by pivoting your data on a second dimension. 126 # are attributes of your data. For example, the dimension `ga:city` 129 "name": "A String", # Name of the dimension to fetch, for example `ga:browser`. 130 … "histogramBuckets": [ # If non-empty, we place dimension values into buckets after string to 131 # int64. Dimension values that are not the string representation of an 135 # boundary, the "last" bucket includes all values up to infinity. Dimension 136 # values that fall in a bucket get transformed to a new dimension value. For 140 # - bucket #1: values < 0, dimension value "<0" 141 # - bucket #2: values in [0,1), dimension value "0" 142 # - bucket #3: values in [1,3), dimension value "1-2" [all …]
|
/external/tensorflow/tensorflow/python/framework/ |
D | tensor_shape_test.py | 31 dim = tensor_shape.Dimension(12) 34 self.assertEqual(dim, tensor_shape.Dimension(12)) 35 self.assertEqual(tensor_shape.Dimension(15), 36 dim + tensor_shape.Dimension(3)) 37 self.assertEqual(tensor_shape.Dimension(15), dim + 3) 38 self.assertEqual(tensor_shape.Dimension(15), 3 + dim) 39 self.assertEqual(tensor_shape.Dimension(9), dim - 3) 40 self.assertEqual(tensor_shape.Dimension(1), 13 - dim) 41 self.assertEqual(tensor_shape.Dimension(24), 42 dim * tensor_shape.Dimension(2)) [all …]
|
D | tensor_shape.py | 36 Concretely, `tensor_shape[i]` returned a Dimension instance in V1, but 66 dim = Dimension(None) 93 def dimension_value(dimension): argument 99 When accessing the value of a TensorShape dimension, 114 dimension: Either a `Dimension` instance, an integer, or None. 119 if isinstance(dimension, Dimension): 120 return dimension.value 121 return dimension 132 If you want to retrieve the Dimension instance corresponding to a certain 148 dim = Dimension(None) [all …]
|
/external/fonttools/Tests/varLib/data/ |
D | Build.designspace | 14 <dimension name="weight" xvalue="0" /> 15 <dimension name="contrast" xvalue="0" /> 23 <dimension name="weight" xvalue="368" /> 24 <dimension name="contrast" xvalue="0" /> 29 <dimension name="weight" xvalue="1000" /> 30 <dimension name="contrast" xvalue="0" /> 35 <dimension name="weight" xvalue="1000" /> 36 <dimension name="contrast" xvalue="100" /> 41 <dimension name="weight" xvalue="0" /> 42 <dimension name="contrast" xvalue="100" /> [all …]
|
/external/eigen/unsupported/test/ |
D | cxx11_tensor_image_patch.cpp | 21 VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); in test_simple_patch() 22 VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); in test_simple_patch() 23 VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); in test_simple_patch() 24 VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); in test_simple_patch() 29 VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2); in test_simple_patch() 30 VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1); in test_simple_patch() 31 VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1); in test_simple_patch() 32 VERIFY_IS_EQUAL(single_pixel_patch.dimension(3), 3*5); in test_simple_patch() 33 VERIFY_IS_EQUAL(single_pixel_patch.dimension(4), 7); in test_simple_patch() 38 VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(0), 7); in test_simple_patch() [all …]
|
D | cxx11_tensor_patch.cpp | 32 VERIFY_IS_EQUAL(no_patch.dimension(0), 1); in test_simple_patch() 33 VERIFY_IS_EQUAL(no_patch.dimension(1), 1); in test_simple_patch() 34 VERIFY_IS_EQUAL(no_patch.dimension(2), 1); in test_simple_patch() 35 VERIFY_IS_EQUAL(no_patch.dimension(3), 1); in test_simple_patch() 36 VERIFY_IS_EQUAL(no_patch.dimension(4), tensor.size()); in test_simple_patch() 38 VERIFY_IS_EQUAL(no_patch.dimension(0), tensor.size()); in test_simple_patch() 39 VERIFY_IS_EQUAL(no_patch.dimension(1), 1); in test_simple_patch() 40 VERIFY_IS_EQUAL(no_patch.dimension(2), 1); in test_simple_patch() 41 VERIFY_IS_EQUAL(no_patch.dimension(3), 1); in test_simple_patch() 42 VERIFY_IS_EQUAL(no_patch.dimension(4), 1); in test_simple_patch() [all …]
|
D | cxx11_tensor_volume_patch.cpp | 15 VERIFY_IS_EQUAL(single_voxel_patch.dimension(0), 4); in test_single_voxel_patch() 16 VERIFY_IS_EQUAL(single_voxel_patch.dimension(1), 1); in test_single_voxel_patch() 17 VERIFY_IS_EQUAL(single_voxel_patch.dimension(2), 1); in test_single_voxel_patch() 18 VERIFY_IS_EQUAL(single_voxel_patch.dimension(3), 1); in test_single_voxel_patch() 19 VERIFY_IS_EQUAL(single_voxel_patch.dimension(4), 2 * 3 * 5); in test_single_voxel_patch() 20 VERIFY_IS_EQUAL(single_voxel_patch.dimension(5), 7); in test_single_voxel_patch() 24 VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(0), 7); in test_single_voxel_patch() 25 VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(1), 2 * 3 * 5); in test_single_voxel_patch() 26 VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(2), 1); in test_single_voxel_patch() 27 VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(3), 1); in test_single_voxel_patch() [all …]
|
D | cxx11_tensor_shuffling.cpp | 31 VERIFY_IS_EQUAL(no_shuffle.dimension(0), 2); in test_simple_shuffling() 32 VERIFY_IS_EQUAL(no_shuffle.dimension(1), 3); in test_simple_shuffling() 33 VERIFY_IS_EQUAL(no_shuffle.dimension(2), 5); in test_simple_shuffling() 34 VERIFY_IS_EQUAL(no_shuffle.dimension(3), 7); in test_simple_shuffling() 53 VERIFY_IS_EQUAL(shuffle.dimension(0), 5); in test_simple_shuffling() 54 VERIFY_IS_EQUAL(shuffle.dimension(1), 7); in test_simple_shuffling() 55 VERIFY_IS_EQUAL(shuffle.dimension(2), 3); in test_simple_shuffling() 56 VERIFY_IS_EQUAL(shuffle.dimension(3), 2); in test_simple_shuffling() 98 VERIFY_IS_EQUAL(result.dimension(0), 5); in test_expr_shuffling() 99 VERIFY_IS_EQUAL(result.dimension(1), 7); in test_expr_shuffling() [all …]
|
D | cxx11_tensor_reverse.cpp | 33 VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); in test_simple_reverse() 34 VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); in test_simple_reverse() 35 VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); in test_simple_reverse() 36 VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); in test_simple_reverse() 55 VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); in test_simple_reverse() 56 VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); in test_simple_reverse() 57 VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); in test_simple_reverse() 58 VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); in test_simple_reverse() 78 VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); in test_simple_reverse() 79 VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); in test_simple_reverse() [all …]
|
/external/tensorflow/tensorflow/compiler/xla/g3doc/ |
D | shapes.md | 14 The dimension numbers are arbitrary labels for convenience. The order of 15 these dimension numbers does not imply a particular minor/major ordering in 18 * By convention, dimensions are listed in increasing order of dimension 20 dimension 0 has size `A`, dimension 1 has size `B` and dimension 2 has size 24 dimension -1 is the last dimension (equivalent to `N-1` for an `N` 26 above, dimension -1 has size `C`, dimension -2 has size `B` and so on. 31 * dimension 0: `y` 32 * dimension 1: `x` 36 * dimension 0: `z` 37 * dimension 1: `y` [all …]
|
D | broadcasting.md | 60 broadcasting tuple specifies which dimension(s) in the **higher-rank** array to 64 a vector of dimension (3) to a matrix of dimensions (2,3). *Without specifying 66 addition, specify the broadcasting dimension to be (1), meaning the vector's 67 dimension is matched to dimension 1 of the matrix. In 2D, if dimension 0 is 68 considered as rows and dimension 1 as columns, this means that each element of 74 As a more complex example, consider adding a 3-element vector (dimension (3)) to 78 (1) A broadcasting dimension of 1 can be used. Each vector element becomes a 85 (2) A broadcasting dimension of 0 can be used. Each vector element becomes a row 92 > Note: when adding a 2x3 matrix to a 3-element vector, a broadcasting dimension 110 example, for an array with dimensions MxNxPxQ, a vector with dimension T can be [all …]
|
/external/google-fruit/extras/benchmark/tables/ |
D | fruit_wiki.yml | 5 dimension: "num_bindings" 10 dimension: "num_classes" 15 dimension: "compiler_name" 30 dimension: "compile_time" 41 dimension: "compile_time" 52 dimension: "Full injection time" 63 dimension: "Total for setup" 74 dimension: "Total per request" 85 dimension: "Total" 96 dimension: "name" [all …]
|
D | fruit_internal.yml | 5 dimension: "num_bindings" 10 dimension: "num_classes" 15 dimension: "compiler_name" 28 dimension: "compile_time" 39 dimension: "compile_time" 50 dimension: "compile_time" 61 dimension: "Full injection time" 72 dimension: "componentNormalizationTime" 83 dimension: "Total for setup" 94 dimension: "Total per request" [all …]
|
/external/tensorflow/tensorflow/core/util/ |
D | tensor_format.h | 29 // The mnemonics specify the meaning of each tensor dimension sorted from 44 // as NCHW, except that the size of the Channels dimension is divided by 4, 45 // and a new dimension of size 4 is appended, which packs 4 adjacent channel 52 // Similar to NHWC, but the size of the W dimension is divided by 4, and a 53 // new dimension of size 4 is appended, which packs 4 adjacent activations 54 // in the width dimension. 71 // The mnemonics specify the meaning of each tensor dimension sorted 86 // of the Input Channels dimension is divided by 4, and a new dimension of 121 // since it just a component of the width dimension. in GetTensorSpatialDims() 161 // Returns the index of the batch dimension. [all …]
|
/external/libxml2/test/schemas/ |
D | bug306806_0.xml | 9 <radius dimension='L' Length='inch'> 1.375 </radius> 10 <length dimension='L' Length='inch'> 30.250 </length> 12 <translation dimension='L' Length='inch'> -13.125 0.000 0.000</translation> 13 <rotation dimension='L' Length='degree'> -0.000 90.000 0.000</rotation> 24 <radius dimension='L' Length='inch'> 1.375 </radius> 25 <base1 dimension='L' Length='inch'> 0 0 0 </base1> 26 <base2 dimension='L' Length='inch'> 1.1 1.1 1.1 </base2> 36 <radius dimension='L' Length='inch'> 1.375 </radius> 37 <base1 dimension='L' Length='inch'> 0 0 0 </base1> 38 <base2 dimension='L' Length='inch'> 1.1 1.1 1.1 </base2> [all …]
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | dynamic_dimension_inference.cc | 80 HloInstruction* operand, ShapeIndex index, int64 dimension, 86 // Pass through a dynamic dimension from the input to the output with the same 100 hlo, [&](HloInstruction* operand, ShapeIndex index, int64 dimension, in DefaultAction() 103 "Asked to propagate a dynamic dimension from hlo ", in DefaultAction() 104 operand->ToString(), "@", index.ToString(), "@", dimension, in DefaultAction() 112 hlo, [&](HloInstruction* operand, ShapeIndex index, int64 dimension, in HandleGetTupleElement() argument 117 parent_->SetDynamicSize(hlo, new_index, dimension, dynamic_size); in HandleGetTupleElement() 125 hlo, [&](HloInstruction*, ShapeIndex index, int64 dimension, in HandleTuple() argument 128 parent_->SetDynamicSize(hlo, index, dimension, dynamic_size); in HandleTuple() 135 hlo, [&](HloInstruction* operand, ShapeIndex index, int64 dimension, in HandleBroadcast() argument [all …]
|
/external/javaparser/javaparser-core/src/main/java/com/github/javaparser/ast/ |
D | ArrayCreationLevel.java | 50 private Expression dimension; field in ArrayCreationLevel 58 public ArrayCreationLevel(int dimension) { in ArrayCreationLevel() argument 59 this(null, new IntegerLiteralExpr("" + dimension), new NodeList<>()); in ArrayCreationLevel() 62 public ArrayCreationLevel(Expression dimension) { in ArrayCreationLevel() argument 63 this(null, dimension, new NodeList<>()); in ArrayCreationLevel() 67 public ArrayCreationLevel(Expression dimension, NodeList<AnnotationExpr> annotations) { in ArrayCreationLevel() argument 68 this(null, dimension, annotations); in ArrayCreationLevel() 75 …public ArrayCreationLevel(TokenRange tokenRange, Expression dimension, NodeList<AnnotationExpr> an… in ArrayCreationLevel() argument 77 setDimension(dimension); in ArrayCreationLevel() 95 * Sets the dimension [all …]
|
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/state_space_models/ |
D | kalman_filter.py | 88 estimated_state: A prior mean over states [batch size x state dimension] 91 the state dimension). 98 given [batch size x observation dimension] 99 observation_model: The [batch size x observation dimension x model state 100 dimension] Tensor indicating how a particular state is mapped to 102 observation_noise: A [batch size x observation dimension x observation 103 dimension] Tensor or [observation dimension x observation dimension] 158 transition_matrices: A [batch size, state dimension, state dimension] 184 estimate [batch size x state dimension x state dimension] 185 transition_matrices: A [batch size, state dimension, state dimension] [all …]
|
/external/tensorflow/tensorflow/compiler/xla/ |
D | layout_util.h | 37 // Creates a layout with the given minor-to-major dimension order. (This is a 101 // * R2+: equivalent to column-major. Dimension 0 is the minor, dimension 1 is 102 // more major, and so on until dimension N-1 which is the major. 107 // * R2+: equivalent to row-major. Dimension 0 is the major, dimension 1 is 108 // more minor, and so on until dimension N-1 which is the minor. 137 // Major(0) is the most major logical dimension number, Major(1) is the 138 // second-most-major logical dimension number and so on. 140 // This can be used to translate physical dimension numbers to logical 141 // dimension numbers. Assume that we are numbering the physical dimensions so 142 // that the most major physical dimension has physical dimension number 0 and [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/ode/ |
D | FirstOrderConverter.java | 29 * <p>The transformation is done by changing the n dimension state 30 * vector to a 2n dimension vector, where the first n components are 63 /** second order problem dimension. */ 64 private final int dimension; field in FirstOrderConverter 81 dimension = equations.getDimension(); in FirstOrderConverter() 82 z = new double[dimension]; in FirstOrderConverter() 83 zDot = new double[dimension]; in FirstOrderConverter() 84 zDDot = new double[dimension]; in FirstOrderConverter() 87 /** Get the dimension of the problem. 88 * <p>The dimension of the first order problem is twice the [all …]
|