/external/tensorflow/tensorflow/python/keras/wrappers/ |
D | scikit_learn_test.py | 32 BATCH_SIZE = 5 variable 57 clf.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS) 59 score = clf.score(x_train, y_train, batch_size=BATCH_SIZE) 62 preds = clf.predict(x_test, batch_size=BATCH_SIZE) 67 proba = clf.predict_proba(x_test, batch_size=BATCH_SIZE) 93 reg.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS) 95 score = reg.score(x_train, y_train, batch_size=BATCH_SIZE) 98 preds = reg.predict(x_test, batch_size=BATCH_SIZE) 109 batch_size=BATCH_SIZE, 125 batch_size=BATCH_SIZE, [all …]
|
/external/tensorflow/tensorflow/python/keras/ |
D | callbacks_v1_test.py | 41 BATCH_SIZE = 5 variable 63 max_batch_index = len(x_train) // BATCH_SIZE 65 max_batch_index = len(x_test) // BATCH_SIZE 69 yield (x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE], 70 y_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]) 72 yield (x_test[i * BATCH_SIZE:(i + 1) * BATCH_SIZE], 73 y_test[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]) 102 batch_size=BATCH_SIZE, 112 batch_size=BATCH_SIZE, 172 max_batch_index = len(x_train) // BATCH_SIZE [all …]
|
D | callbacks_test.py | 60 BATCH_SIZE = 5 variable 313 batch_size=BATCH_SIZE, 333 batch_size=BATCH_SIZE, 354 batch_size=BATCH_SIZE, 374 batch_size=BATCH_SIZE, 392 batch_size=BATCH_SIZE, 417 batch_size=BATCH_SIZE, 467 batch_size=BATCH_SIZE, 586 batch_size=BATCH_SIZE, 603 batch_size=BATCH_SIZE, [all …]
|
/external/libaom/libaom/common/ |
D | rawenc.c | 15 #define BATCH_SIZE 8 macro 18 static const uint8_t batched[BATCH_SIZE] = { 128, 128, 128, 128, 20 static const uint8_t batched_hbd[BATCH_SIZE] = { 48 high_bitdepth ? n / (BATCH_SIZE / 2) : n / BATCH_SIZE; in write_greyscale() 50 writer_func(file_or_md5, b, sizeof(uint8_t), BATCH_SIZE); in write_greyscale() 52 const int remaining = high_bitdepth ? n % (BATCH_SIZE / 2) : n % BATCH_SIZE; in write_greyscale()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | candidate_sampler_ops_test.py | 34 BATCH_SIZE = 3 variable in RangeSamplerOpsTest 47 true_candidates_vec, [self.BATCH_SIZE, self.NUM_TRUE]) 75 self.assertAllEqual(result, [[0.0] * self.NUM_TRUE] * self.BATCH_SIZE) 77 [self.BATCH_SIZE, self.NUM_TRUE]) 79 [self.BATCH_SIZE, self.NUM_TRUE])
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/rnn_ptb/ |
D | rnn_ptb_graph_test.py | 62 BATCH_SIZE = 20 variable in PTBBenchmark 83 [PTBBenchmark.SEQ_LEN, PTBBenchmark.BATCH_SIZE], 100 tf.test.gpu_device_name(), PTBBenchmark.BATCH_SIZE) 123 [PTBBenchmark.SEQ_LEN, PTBBenchmark.BATCH_SIZE], 145 tf.test.gpu_device_name(), PTBBenchmark.BATCH_SIZE)
|
D | rnn_ptb_test.py | 60 BATCH_SIZE = 20 variable in PTBBenchmark 79 [PTBBenchmark.SEQ_LEN, PTBBenchmark.BATCH_SIZE], dtype=tf.int64) 117 [PTBBenchmark.SEQ_LEN, PTBBenchmark.BATCH_SIZE], dtype=tf.int64)
|
/external/tensorflow/tensorflow/contrib/model_pruning/examples/cifar10/ |
D | cifar10_pruning.py | 53 BATCH_SIZE = 128 variable 145 data_dir=data_dir, batch_size=BATCH_SIZE) 166 eval_data=eval_data, data_dir=data_dir, batch_size=BATCH_SIZE) 235 reshape = tf.reshape(pool2, [BATCH_SIZE, -1]) 338 num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / BATCH_SIZE
|
/external/tensorflow/tensorflow/contrib/distribute/python/ |
D | estimator_training_test.py | 56 BATCH_SIZE = 10 variable 59 0., 2., BATCH_SIZE * LABEL_DIMENSION, dtype=np.float32).reshape( 60 BATCH_SIZE, LABEL_DIMENSION) 169 batch_size=BATCH_SIZE // train_distribute.num_replicas_in_sync, 172 eval_batch_size = BATCH_SIZE // eval_distribute.num_replicas_in_sync 174 eval_batch_size = BATCH_SIZE 244 }).batch(BATCH_SIZE) 250 self.assertAllEqual((BATCH_SIZE, LABEL_DIMENSION), predicted_proba.shape)
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | rev_block_lib_test.py | 43 BATCH_SIZE = 16 variable in RevBlockTest 54 [self.BATCH_SIZE, self.CHANNELS], dtype=dtypes.float32) 77 [self.BATCH_SIZE, self.CHANNELS], dtype=dtypes.float32) 117 [self.BATCH_SIZE, self.CHANNELS], dtype=dtypes.float32) 166 [self.BATCH_SIZE, self.CHANNELS // 2]) 187 [self.BATCH_SIZE, 10, self.CHANNELS], dtype=dtypes.float32) 207 [self.BATCH_SIZE, self.CHANNELS], dtype=dtypes.float32)
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/nmt_with_attention/ |
D | nmt_with_attention.ipynb | 329 "BATCH_SIZE = 64\n", 330 "N_BATCH = BUFFER_SIZE//BATCH_SIZE\n", 337 "dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)" 506 "encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE)\n", 507 "decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE)" 610 …" dec_input = tf.expand_dims([targ_lang.word2idx['<start>']] * BATCH_SIZE, 1) \n",
|
/external/tensorflow/tensorflow/tools/docker/notebooks/ |
D | 3_mnist_from_scratch.ipynb | 985 "BATCH_SIZE = 60\n", 996 " shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))\n", 998 " shape=(BATCH_SIZE, NUM_LABELS))\n", 1225 " batch * BATCH_SIZE, # Current index into the dataset.\n", 1358 "BATCH_SIZE = 60\n", 1360 "# Grab the first BATCH_SIZE examples and labels.\n", 1361 "batch_data = train_data[:BATCH_SIZE, :, :, :]\n", 1362 "batch_labels = train_labels[:BATCH_SIZE]\n", 1510 "# But, predictions is actually a list of BATCH_SIZE probability vectors.\n", 1823 "steps = train_size // BATCH_SIZE\n", [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | nn_ops_test.cc | 1284 #define BM_ImageNetSoftmaxFwd(BATCH_SIZE, NODE_DEPTH, TH, GPU, LABEL) \ argument 1286 BM_ImageNetSoftmaxFwd_##BATCH_SIZE##_##NODE_DEPTH##_##TH##_##GPU( \ 1288 BM_ImageNetSoftmaxFwd(iters, BATCH_SIZE, NODE_DEPTH, TH, GPU, LABEL); \ 1290 BENCHMARK(BM_ImageNetSoftmaxFwd_##BATCH_SIZE##_##NODE_DEPTH##_##TH##_##GPU)
|
/external/tensorflow/tensorflow/python/framework/ |
D | function_test.py | 1488 BATCH_SIZE = 16 variable in UnrollLSTMTest 1498 [self.NUM_UNROLL, self.BATCH_SIZE, self.LSTM_DIMS], seed=654321)
|