/external/eigen/doc/snippets/ |
D | RealQZ_compute.cpp | 1 MatrixXf A = MatrixXf::Random(4,4); 2 MatrixXf B = MatrixXf::Random(4,4); 3 RealQZ<MatrixXf> qz(4); // preallocate space for 4x4 matrices 15 << "\n|QQ* - I|: " << (qz.matrixQ()*qz.matrixQ().adjoint() - MatrixXf::Identity(4,4)).norm() 16 << ", |ZZ* - I|: " << (qz.matrixZ()*qz.matrixZ().adjoint() - MatrixXf::Identity(4,4)).norm()
|
D | SelfAdjointEigenSolver_compute_MatrixType.cpp | 1 SelfAdjointEigenSolver<MatrixXf> es(4); 2 MatrixXf X = MatrixXf::Random(4,4); 3 MatrixXf A = X + X.transpose(); 6 es.compute(A + MatrixXf::Identity(4,4)); // re-use es to compute eigenvalues of A+I
|
D | GeneralizedEigenSolver.cpp | 1 GeneralizedEigenSolver<MatrixXf> ges; 2 MatrixXf A = MatrixXf::Random(4,4); 3 MatrixXf B = MatrixXf::Random(4,4);
|
D | Tutorial_commainit_02.cpp | 2 MatrixXf m(rows,cols); 4 MatrixXf::Zero(3,cols-3), 5 MatrixXf::Zero(rows-3,3), 6 MatrixXf::Identity(rows-3,cols-3);
|
D | EigenSolver_compute.cpp | 1 EigenSolver<MatrixXf> es; 2 MatrixXf A = MatrixXf::Random(4,4); 5 es.compute(A + MatrixXf::Identity(4,4), false); // re-use es to compute eigenvalues of A+I
|
D | HouseholderQR_householderQ.cpp | 1 MatrixXf A(MatrixXf::Random(5,3)), thinQ(MatrixXf::Identity(5,3)), Q; 3 HouseholderQR<MatrixXf> qr(A);
|
D | Tridiagonalization_compute.cpp | 1 Tridiagonalization<MatrixXf> tri; 2 MatrixXf X = MatrixXf::Random(4,4); 3 MatrixXf A = X + X.transpose();
|
D | HessenbergDecomposition_matrixH.cpp | 1 Matrix4f A = MatrixXf::Random(4,4); 3 HessenbergDecomposition<MatrixXf> hessOfA(A); 4 MatrixXf H = hessOfA.matrixH(); 6 MatrixXf Q = hessOfA.matrixQ();
|
D | Tutorial_AdvancedInitialization_CommaTemporary.cpp | 1 MatrixXf mat = MatrixXf::Random(2, 3); 3 mat = (MatrixXf(2,2) << 0, 1, 1, 0).finished() * mat;
|
D | FullPivLU_kernel.cpp | 1 MatrixXf m = MatrixXf::Random(3,5); 3 MatrixXf ker = m.fullPivLu().kernel();
|
D | RealSchur_compute.cpp | 1 MatrixXf A = MatrixXf::Random(4,4); 2 RealSchur<MatrixXf> schur(4);
|
D | JacobiSVD_basic.cpp | 1 MatrixXf m = MatrixXf::Random(3,2); 3 JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV);
|
D | TopicAliasing_cwise.cpp | 1 MatrixXf mat(2,2); 9 mat = mat - MatrixXf::Identity(2,2); 19 mat = (2 * mat - MatrixXf::Identity(2,2)).array().square();
|
/external/eigen/bench/ |
D | benchVecAdd.cpp | 18 __attribute__ ((noinline)) void benchVec(MatrixXf& a, MatrixXf& b, MatrixXf& c); 50 MatrixXf ma = Map<MatrixXf>(a, innersize, outersize ); in main() 51 MatrixXf mb = Map<MatrixXf>(b, innersize, outersize ); in main() 52 MatrixXf mc = Map<MatrixXf>(c, innersize, outersize ); in main() 79 void benchVec(MatrixXf& a, MatrixXf& b, MatrixXf& c) in benchVec()
|
/external/eigen/doc/examples/ |
D | TemplateKeyword_simple.cpp | 6 void copyUpperTriangularPart(MatrixXf& dst, const MatrixXf& src) in copyUpperTriangularPart() 13 MatrixXf m1 = MatrixXf::Ones(4,4); in main() 14 MatrixXf m2 = MatrixXf::Random(4,4); in main()
|
D | Tutorial_ArrayClass_interop.cpp | 9 MatrixXf m(2,2); in main() 10 MatrixXf n(2,2); in main() 11 MatrixXf result(2,2); in main()
|
D | Tutorial_ReductionsVisitorsBroadcasting_visitors.cpp | 9 Eigen::MatrixXf m(2,2); in main() 15 MatrixXf::Index maxRow, maxCol; in main() 19 MatrixXf::Index minRow, minCol; in main()
|
D | Tutorial_ArrayClass_interop_matrix.cpp | 9 MatrixXf m(2,2); in main() 10 MatrixXf n(2,2); in main() 11 MatrixXf result(2,2); in main()
|
/external/eigen/test/ |
D | product_large.cpp | 36 …CALL_SUBTEST_1( product(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<in… in test_product_large() 50 MatrixXf m = MatrixXf::Ones(N,3); in test_product_large() 52 VERIFY_IS_APPROX(m, MatrixXf::Constant(N,3,2)); in test_product_large() 57 MatrixXf a = MatrixXf::Random(10,4), b = MatrixXf::Random(4,10), c = a; in test_product_large() 79 MatrixXf mat1(10,32); mat1.setRandom(); in test_product_large() 80 MatrixXf mat2(32,32); mat2.setRandom(); in test_product_large() 81 MatrixXf r1 = mat1.row(2)*mat2.transpose(); in test_product_large() 84 MatrixXf r2 = mat1.row(2)*mat2; in test_product_large()
|
D | jacobisvd.cpp | 77 CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) )); in test_jacobisvd() 96 CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) )); in test_jacobisvd() 102 CALL_SUBTEST_7( (svd_inf_nan<JacobiSVD<MatrixXf>, MatrixXf>()) ); in test_jacobisvd() 112 …CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_T… in test_jacobisvd() 120 CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) ); in test_jacobisvd()
|
D | bdcsvd.cpp | 69 CALL_SUBTEST_7(( svd_verify_assert<BDCSVD<MatrixXf> >(MatrixXf(10,12)) )); in test_bdcsvd() 87 CALL_SUBTEST_7(( bdcsvd(MatrixXf(r,c)) )); in test_bdcsvd() 88 CALL_SUBTEST_7(( compare_bdc_jacobi(MatrixXf(r,c)) )); in test_bdcsvd() 95 CALL_SUBTEST_7( (svd_inf_nan<BDCSVD<MatrixXf>, MatrixXf>()) ); in test_bdcsvd() 104 CALL_SUBTEST_7( BDCSVD<MatrixXf>(10,10) ); in test_bdcsvd()
|
/external/eigen/unsupported/doc/examples/ |
D | MatrixSinh.cpp | 8 MatrixXf A = MatrixXf::Random(3,3); in main() 11 MatrixXf sinhA = A.sinh(); in main() 14 MatrixXf coshA = A.cosh(); in main()
|
/external/eigen/unsupported/test/ |
D | cxx11_tensor_forced_eval.cpp | 15 using Eigen::MatrixXf; 20 MatrixXf m1(3,3); in test_simple() 21 MatrixXf m2(3,3); in test_simple() 51 MatrixXf input(3,3); in test_const() 53 MatrixXf output = input; in test_const()
|
D | kronecker_product.cpp | 196 MatrixXf dA(ra,ca), dB(rb,cb), dC; in test_kronecker_product() 202 VERIFY_IS_APPROX(MatrixXf(sC),dC); in test_kronecker_product() 206 VERIFY_IS_APPROX(MatrixXf(sC),dC); in test_kronecker_product() 210 VERIFY_IS_APPROX(MatrixXf(sC),dC); in test_kronecker_product() 214 VERIFY_IS_APPROX(MatrixXf(sC),dC); in test_kronecker_product() 218 VERIFY_IS_APPROX(MatrixXf(sC2),dC); in test_kronecker_product() 222 VERIFY_IS_APPROX(MatrixXf(sC2),dC); in test_kronecker_product() 226 VERIFY_IS_APPROX(MatrixXf(sC2),dC); in test_kronecker_product() 230 VERIFY_IS_APPROX(MatrixXf(sC2),dC); in test_kronecker_product()
|
/external/eigen/doc/ |
D | FunctionsTakingEigenTypes.dox | 82 … The typical example is to write functions accepting both a MatrixXf or a block of a MatrixXf. Thi… 92 …pted by Ref<MatrixXf>. However, in the last call, we have a generic expression that will be automa… 96 void cov(const Ref<const MatrixXf> x, const Ref<const MatrixXf> y, Ref<MatrixXf> C) 106 MatrixXf m1, m2, m3 116 MatrixXf cov(const MatrixXf& x, const MatrixXf& y) 126 MatrixXf x,y,z; 127 MatrixXf C = cov(x,y+z); 139 void cov(const MatrixXf& x, const MatrixXf& y, MatrixXf& C) 149 MatrixXf C = MatrixXf::Zero(3,6); 152 …ot possible to convert the expression returned by \c MatrixXf::block() into a non-const \c MatrixX… [all …]
|