/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
D | shape_test.py | 52 def _get_expected(self, x, batch_ndims, event_ndims, expand_batch_dim): argument 56 n = x.ndim - batch_ndims - event_ndims 60 if event_ndims == 0: 66 def _build_graph(self, x, batch_ndims, event_ndims, expand_batch_dim): argument 68 event_ndims=event_ndims) 75 def _test_dynamic(self, x, batch_ndims, event_ndims, expand_batch_dim=True): argument 86 event_ndims_pl: event_ndims}) 88 x, batch_ndims, event_ndims, expand_batch_dim) 93 def _test_static(self, x, batch_ndims, event_ndims, expand_batch_dim): argument 96 self._build_graph(x, batch_ndims, event_ndims, expand_batch_dim)) [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | bijector_test.py | 78 bij.inverse_log_det_jacobian(0, event_ndims=0) 82 bij.forward_log_det_jacobian(0, event_ndims=0) 124 bij.forward_log_det_jacobian(1., event_ndims=1.5) 126 bij.inverse_log_det_jacobian(1., event_ndims=1.5) 131 bij.forward_log_det_jacobian(1., event_ndims=(1, 2)) 133 bij.inverse_log_det_jacobian(1., event_ndims=(1, 2)) 138 event_ndims = array_ops.placeholder(dtype=np.int32, shape=None) 141 bij.forward_log_det_jacobian(1., event_ndims=event_ndims).eval({ 142 event_ndims: (1, 2)}) 144 bij.inverse_log_det_jacobian(1., event_ndims=event_ndims).eval({ [all …]
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | bijector_impl.py | 818 def _call_inverse_log_det_jacobian(self, y, event_ndims, name, **kwargs): argument 820 if event_ndims in self._constant_ildj_map: 821 return self._constant_ildj_map[event_ndims] 826 event_ndims=event_ndims)): 831 y, ildj, self.inverse_min_event_ndims, event_ndims) 838 x, -fldj, self.forward_min_event_ndims, event_ndims) 844 if mapping.ildj_map is not None and event_ndims in mapping.ildj_map: 845 return mapping.ildj_map[event_ndims] 850 y, ildj, self.inverse_min_event_ndims, event_ndims) 857 x, ildj, self.forward_min_event_ndims, event_ndims) [all …]
|
D | bijector_test_util.py | 115 uniform_y_samps, event_ndims=0)) 126 bijector.inverse(uniform_y_samps), event_ndims=0)) 164 bijector, x, y, event_ndims, atol=0, rtol=1e-5, sess=None): argument 205 bijector.inverse_log_det_jacobian(f_x, event_ndims=event_ndims), 206 bijector.forward_log_det_jacobian(x, event_ndims=event_ndims), 207 bijector.inverse_log_det_jacobian(y, event_ndims=event_ndims), 208 bijector.forward_log_det_jacobian(g_y, event_ndims=event_ndims),
|
D | transformed_distribution.py | 428 event_ndims = self._maybe_get_static_event_ndims() 430 ildj = self.bijector.inverse_log_det_jacobian(y, event_ndims=event_ndims) 432 return self._finish_log_prob_for_one_fiber(y, x, ildj, event_ndims) 435 self._finish_log_prob_for_one_fiber(y, x_i, ildj_i, event_ndims) 439 def _finish_log_prob_for_one_fiber(self, y, x, ildj, event_ndims): argument 446 if self._is_maybe_event_override and isinstance(event_ndims, int): 449 y.get_shape().with_rank_at_least(1)[:-event_ndims], 455 event_ndims = self._maybe_get_static_event_ndims() 456 ildj = self.bijector.inverse_log_det_jacobian(y, event_ndims=event_ndims) 458 return self._finish_prob_for_one_fiber(y, x, ildj, event_ndims) [all …]
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/ |
D | chain.py | 262 event_ndims = self._maybe_get_static_event_ndims( 265 if _use_static_shape(y, event_ndims): 266 event_shape = y.shape[y.shape.ndims - event_ndims:] 268 event_shape = array_ops.shape(y)[array_ops.rank(y) - event_ndims:] 272 y, event_ndims=event_ndims, **kwargs.get(b.name, {})) 274 if _use_static_shape(y, event_ndims): 276 event_ndims = self._maybe_get_static_event_ndims( 280 event_ndims = array_ops.size(event_shape) 281 event_ndims_ = self._maybe_get_static_event_ndims(event_ndims) 283 event_ndims = event_ndims_ [all …]
|
D | conditional_bijector.py | 47 self, y, event_ndims, name="inverse_log_det_jacobian", argument 50 y, event_ndims, name, **condition_kwargs) 56 self, x, event_ndims, name="forward_log_det_jacobian", argument 59 x, event_ndims, name, **condition_kwargs)
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/bijectors/ |
D | matrix_inverse_tril_test.py | 55 fldj = inv.forward_log_det_jacobian(x_, event_ndims=2) 56 ildj = inv.inverse_log_det_jacobian(x_inv_, event_ndims=2) 73 fldj = inv.forward_log_det_jacobian(x_, event_ndims=2) 74 ildj = inv.inverse_log_det_jacobian(x_inv_, event_ndims=2) 91 fldj = inv.forward_log_det_jacobian(x_, event_ndims=2) 92 ildj = inv.inverse_log_det_jacobian(x_inv_, event_ndims=2) 115 fldj = inv.forward_log_det_jacobian(x_, event_ndims=2) 116 ildj = inv.inverse_log_det_jacobian(x_inv_, event_ndims=2) 134 self.evaluate(inv.forward_log_det_jacobian(x_, event_ndims=2)) 136 self.evaluate(inv.inverse_log_det_jacobian(x_, event_ndims=2)) [all …]
|
D | affine_linear_operator_test.py | 42 y, event_ndims=2).eval()) 44 -affine.inverse_log_det_jacobian(y, event_ndims=2).eval(), 45 affine.forward_log_det_jacobian(x, event_ndims=2).eval()) 64 ildj, affine.inverse_log_det_jacobian(y, event_ndims=1).eval()) 66 -affine.inverse_log_det_jacobian(y, event_ndims=1).eval(), 67 affine.forward_log_det_jacobian(x, event_ndims=1).eval()) 99 y, event_ndims=2).eval()) 101 -affine.inverse_log_det_jacobian(y, event_ndims=2).eval(), 102 affine.forward_log_det_jacobian(x, event_ndims=2).eval())
|
D | affine_test.py | 71 0., run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) 97 run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) 114 run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) 136 sess.run(bijector.inverse_log_det_jacobian(x, event_ndims=1), 161 run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) 185 run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) 209 x, event_ndims=1), feed_dict)) 235 run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) 261 run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) 285 run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) [all …]
|
D | softmax_centered_test.py | 47 softmax.inverse_log_det_jacobian(y, event_ndims=1).eval(), 51 -softmax.inverse_log_det_jacobian(y, event_ndims=1).eval(), 52 softmax.forward_log_det_jacobian(x, event_ndims=1).eval(), 70 softmax.inverse_log_det_jacobian(y, event_ndims=1).eval( 75 -softmax.inverse_log_det_jacobian(y, event_ndims=1).eval( 77 softmax.forward_log_det_jacobian(x, event_ndims=1).eval( 107 assert_bijective_and_finite(softmax, x, y, event_ndims=1)
|
D | ordered_test.py | 49 self.evaluate(ordered.inverse_log_det_jacobian(y, event_ndims=1)), 53 self.evaluate(-ordered.inverse_log_det_jacobian(y, event_ndims=1)), 54 self.evaluate(ordered.forward_log_det_jacobian(x, event_ndims=1)), 72 ordered.inverse_log_det_jacobian(y, event_ndims=1).eval( 77 -ordered.inverse_log_det_jacobian(y, event_ndims=1).eval( 79 ordered.forward_log_det_jacobian(x, event_ndims=1).eval( 103 assert_bijective_and_finite(ordered, x, y, event_ndims=1)
|
D | sinh_arcsinh_bijector_test.py | 53 bijector.inverse_log_det_jacobian(y, event_ndims=1).eval()) 55 -bijector.inverse_log_det_jacobian(y, event_ndims=1).eval(), 56 bijector.forward_log_det_jacobian(x, event_ndims=1).eval(), 109 assert_bijective_and_finite(bijector, x, x, event_ndims=0, rtol=1e-3) 117 bijector, x, x, event_ndims=0, rtol=1e-3) 129 bijector, bounds, bounds, event_ndims=0, atol=2e-6) 169 bijector.inverse_log_det_jacobian(y, event_ndims=0).eval(), 173 -bijector.inverse_log_det_jacobian(y, event_ndims=0).eval(), 174 bijector.forward_log_det_jacobian(x, event_ndims=0).eval(),
|
D | chain_test.py | 58 chain.inverse_log_det_jacobian(x, event_ndims=1).eval()) 61 chain.forward_log_det_jacobian(x, event_ndims=1).eval()) 72 0., chain.inverse_log_det_jacobian(x, event_ndims=1).eval()) 74 0., chain.forward_log_det_jacobian(x, event_ndims=1).eval()) 171 self.evaluate(chain.forward_log_det_jacobian(x, event_ndims=1))) 175 self.evaluate(chain.inverse_log_det_jacobian(y, event_ndims=1))) 186 self.evaluate(chain.forward_log_det_jacobian(x, event_ndims=1))) 190 self.evaluate(chain.inverse_log_det_jacobian(y, event_ndims=1))) 196 ildj = chain.inverse_log_det_jacobian(samples, event_ndims=0)
|
D | exp_test.py | 43 y, event_ndims=1).eval()) 46 np.exp(x), event_ndims=1).eval(), 48 x, event_ndims=1).eval()) 61 assert_bijective_and_finite(bijector, x, y, event_ndims=0)
|
D | transform_diagonal_test.py | 51 fldj = self.evaluate(b.forward_log_det_jacobian(x, event_ndims=2)) 52 ildj = self.evaluate(b.inverse_log_det_jacobian(y, event_ndims=2)) 57 event_ndims=1))) 62 event_ndims=1)))
|
D | softplus_test.py | 77 y, event_ndims=0).eval()) 97 y, event_ndims=1).eval()) 123 bijector, x, y, event_ndims=0, rtol=1e-2, atol=1e-2) 131 bijector, x, y, event_ndims=0, rtol=1e-2, atol=1e-2) 139 bijector, x, y, event_ndims=0, rtol=1e-2, atol=1e-2) 151 bijector, x, y, event_ndims=0, rtol=1e-1, atol=1e-3)
|
D | power_transform_test.py | 43 bijector.inverse_log_det_jacobian(y, event_ndims=1).eval()) 45 -bijector.inverse_log_det_jacobian(y, event_ndims=1).eval(), 46 bijector.forward_log_det_jacobian(x, event_ndims=1).eval(), 61 assert_bijective_and_finite(bijector, x, y, event_ndims=0, rtol=1e-3)
|
D | gumbel_test.py | 47 bijector.forward_log_det_jacobian(x, event_ndims=1).eval()) 49 -bijector.inverse_log_det_jacobian(y, event_ndims=1).eval(), 50 bijector.forward_log_det_jacobian(x, event_ndims=1).eval(), 64 assert_bijective_and_finite(bijector, x, y, event_ndims=0, rtol=1e-3)
|
D | kumaraswamy_bijector_test.py | 49 bijector.inverse_log_det_jacobian(x, event_ndims=1).eval()) 51 -bijector.inverse_log_det_jacobian(x, event_ndims=1).eval(), 52 bijector.forward_log_det_jacobian(y, event_ndims=1).eval(), 73 assert_bijective_and_finite(bijector, x, y, event_ndims=0, rtol=1e-3)
|
D | weibull_test.py | 49 bijector.forward_log_det_jacobian(x, event_ndims=0).eval()) 51 -bijector.inverse_log_det_jacobian(y, event_ndims=0).eval(), 52 bijector.forward_log_det_jacobian(x, event_ndims=0).eval(), 70 assert_bijective_and_finite(bijector, x, y, event_ndims=0, rtol=1e-3)
|
D | softsign_test.py | 49 self.evaluate(bijector.inverse_log_det_jacobian(-3., event_ndims=0)) 54 self.evaluate(bijector.inverse_log_det_jacobian(3., event_ndims=0)) 74 bijector.inverse_log_det_jacobian(y, event_ndims=0))) 93 bijector.inverse_log_det_jacobian(y, event_ndims=1))) 106 bijector, x, y, event_ndims=0, rtol=1e-3, atol=1e-3)
|
D | invert_test.py | 49 fwd.forward_log_det_jacobian(x, event_ndims=1).eval(), 50 rev.inverse_log_det_jacobian(x, event_ndims=1).eval()) 52 fwd.inverse_log_det_jacobian(x, event_ndims=1).eval(), 53 rev.forward_log_det_jacobian(x, event_ndims=1).eval())
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
D | shape.py | 180 event_ndims=None, argument 210 if event_ndims is None: raise ValueError("event_ndims cannot be None") 212 self._event_ndims = event_ndims 224 event_ndims, name="event_ndims")) 239 def event_ndims(self): member in _DistributionShape 281 self.event_ndims): 292 sample_ndims = ndims - self.batch_ndims - self.event_ndims 339 self.event_ndims, name="event_dims")) 372 slice_shape([sample_ndims, self.batch_ndims], self.event_ndims, 443 if self._is_all_constant_helper(self.batch_ndims, self.event_ndims): [all …]
|
D | conditional_transformed_distribution.py | 108 event_ndims = self._maybe_get_static_event_ndims() 110 y, event_ndims=event_ndims, **bijector_kwargs) 133 event_ndims = self._maybe_get_static_event_ndims() 135 y, event_ndims=event_ndims, **bijector_kwargs) 226 event_ndims = array_ops.size(self.event_shape_tensor()) 227 event_ndims_ = distribution_util.maybe_get_static_value(event_ndims) 232 return event_ndims
|