/external/tensorflow/tensorflow/core/kernels/ |
D | dilation_ops_gpu.cu.cc | 41 int input_cols, int depth, int filter_rows, in DilationKernel() argument 57 for (int h = 0; h < filter_rows; ++h) { in DilationKernel() 82 int depth, int filter_rows, int filter_cols, int output_rows, in DilationBackpropInputKernel() argument 101 for (int h = 0; h < filter_rows; ++h) { in DilationBackpropInputKernel() 131 int depth, int filter_rows, int filter_cols, int output_rows, in DilationBackpropFilterKernel() argument 150 for (int h = 0; h < filter_rows; ++h) { in DilationBackpropFilterKernel() 190 const int filter_rows = filter.dimension(0); in operator ()() local 202 input_rows, input_cols, depth, filter_rows, filter_cols, output_rows, in operator ()() 221 const int filter_rows = filter.dimension(0); in operator ()() local 244 input_cols, depth, filter_rows, filter_cols, output_rows, output_cols, in operator ()() [all …]
|
D | depthwise_conv_grad_op.cc | 82 const int64 filter_rows = filter_shape.dim_size(0); \ 117 GetWindowedOutputSize(input_rows, filter_rows, stride, \ 137 args.filter_rows = filter_rows; \ 148 << "]; Filter: [" << filter_rows << ", " << filter_cols << ", " \ 188 const int64 filter_rows = args.filter_rows; in CopyOutputBackpropRegion() local 197 static_cast<int64>(0), (in_r - filter_rows + pad_rows + stride) / stride); in CopyOutputBackpropRegion() 204 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in CopyOutputBackpropRegion() 205 if ((out_r_end - out_r_start + 1) < args.filter_rows || in CopyOutputBackpropRegion() 287 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in ComputeBackpropInput() 389 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in operator ()() [all …]
|
D | depthwise_conv_op.cc | 90 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in Run() 171 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in operator ()() 194 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; in operator ()() 335 const int32 filter_rows = filter.dim_size(0); in Compute() local 350 GetWindowedOutputSize(input_rows, filter_rows, stride_, in Compute() 379 << ", " << in_depth << "]; Filter: [" << filter_rows << ", " in Compute() 397 TensorShape{filter_rows, filter_cols, filter_in_depth, out_depth}; in Compute() 417 args.filter_rows = filter_rows; in Compute()
|
D | deep_conv2d.h | 73 int filter_rows; member 88 filter_rows(0), in Conv2DArgs() 100 bool CanUseDeepConv2D(int stride_rows, int stride_cols, int filter_rows,
|
D | mkl_conv_ops.h | 214 int filter_rows = in GetFilterSizeInMklOrder() local 232 mkldnn_sizes[MKL_GROUP_FILTER_DIM_H] = filter_rows; in GetFilterSizeInMklOrder() 240 mkldnn_sizes[MklDnnDims::Dim_H] = filter_rows; in GetFilterSizeInMklOrder() 254 int filter_rows = in GetFilterSizeInMklOrder() local 269 mkldnn_sizes[MklDnnDims3D::Dim3d_H] = filter_rows; in GetFilterSizeInMklOrder() 343 int filter_planes, filter_rows, filter_cols; variable 345 filter_rows = filter_shape.dim_size(TF_2DFILTER_DIM_H); 349 filter_rows = filter_shape.dim_size(TF_3DFILTER_DIM_H); 407 input_rows, filter_rows, dilation_rows, stride_rows, 418 input_rows, filter_rows, stride_rows,
|
D | dilation_ops.cc | 92 const int filter_rows = filter.dim_size(0); in ParseSizes() local 102 filter_rows + (filter_rows - 1) * (*rate_rows - 1); in ParseSizes() 173 const int filter_rows = filter.dimension(0); in operator ()() local 188 for (int h = 0; h < filter_rows; ++h) { in operator ()() 282 const int filter_rows = filter.dimension(0); in operator ()() local 305 for (int h = 0; h < filter_rows; ++h) { in operator ()() 402 const int filter_rows = filter.dimension(0); in operator ()() local 425 for (int h = 0; h < filter_rows; ++h) { in operator ()()
|
D | conv_ops.cc | 156 int input_cols, int in_depth, int filter_rows, in Run() argument 172 int input_cols, int in_depth, int filter_rows, in Run() argument 179 !CanUseDeepConv2D(stride_rows, stride_cols, filter_rows, filter_cols, in Run() 189 args.filter_rows = filter_rows; in Run() 213 int input_cols, int in_depth, int filter_rows, in Run() argument 227 int input_cols, int in_depth, int filter_rows, in Run() argument 241 desc.R = filter_rows; in Run() 375 const int filter_rows = static_cast<int>(filter.dim_size(0)); in ComputeConv2DDimension() local 411 input_rows, filter_rows, dilation_rows, stride_rows, params.padding, in ComputeConv2DDimension() 421 dimensions->filter_rows = filter_rows; in ComputeConv2DDimension() [all …]
|
D | depthwise_conv_op_gpu.h | 49 args.pad_rows < args.filter_rows && args.pad_cols >= 0 && in CanLaunchDepthwiseConv2dGPUSmall() 51 args.filter_rows * args.filter_cols <= in CanLaunchDepthwiseConv2dGPUSmall() 62 args.pad_rows < args.filter_rows && args.pad_cols >= 0 && in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall() 64 args.filter_rows * args.filter_cols <= args.in_cols * block_height; in CanLaunchDepthwiseConv2dBackpropFilterGPUSmall() 82 kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; in DepthwiseConv2dGPUKernelNHWC() 189 kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; in DepthwiseConv2dGPUKernelNHWCSmall() 322 kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; in DepthwiseConv2dGPUKernelNCHW() 473 kKnownFilterHeight < 0 ? args.filter_rows : kKnownFilterHeight; in DepthwiseConv2dGPUKernelNCHWSmall() 632 const int tile_height = block_height * 2 + args.filter_rows - 1; in LaunchDepthwiseConv2dGPUSmall() 634 const int filter_pixels = args.filter_rows * args.filter_cols; in LaunchDepthwiseConv2dGPUSmall() [all …]
|
D | depthwise_conv_op.h | 31 int filter_rows; member 48 filter_rows(0), in DepthwiseArgs() 145 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; 224 for (int64 f_r = 0; f_r < args.filter_rows; ++f_r) {
|
D | conv_ops_3d.cc | 220 const int64 filter_rows = filter.dim_size(1); in launch() local 233 0, (out_rows - 1) * strides[1] + filter_rows - in_rows); in launch() 239 if (filter_planes == 1 && filter_rows == 1 && filter_cols == 1 && in launch() 266 } else if (filter_planes == in_planes && filter_rows == in_rows && in launch() 367 .set_spatial_dim(DimIndex::Y, filter_rows) in launch() 386 filter_rows, filter_cols}), in launch() 423 {{filter_planes, filter_rows, filter_cols}}, in launch()
|
D | eigen_benchmark.h | 129 Eigen::Index filter_rows = filter_dims[0]; in SpatialConvolutionBackwardKernel() local 149 input, output_backward, filter_rows, filter_cols); in SpatialConvolutionBackwardKernel() 268 Eigen::Index filter_rows = filter_dims[0]; in CuboidConvolutionBackwardKernel() local 289 input, output_backward, filter_planes, filter_rows, filter_cols); in CuboidConvolutionBackwardKernel()
|
D | conv_ops_using_gemm.cc | 496 const int filter_rows = static_cast<int>(filter.dim_size(0)); in Compute() local 522 GetWindowedOutputSize(input_rows, filter_rows, stride_rows, in Compute() 539 << ", filter_rows = " << filter_rows in Compute() 550 in_depth, filter.flat<T>().data(), filter_rows, filter_cols, in Compute()
|
D | deep_conv2d.cc | 74 static int64 GetDirectConvCost(int filter_rows, int filter_cols, int in_depth, in GetDirectConvCost() argument 76 return filter_rows * filter_cols * in_depth * out_depth * out_rows * out_cols; in GetDirectConvCost() 97 bool CanUseDeepConv2D(int stride_rows, int stride_cols, int filter_rows, in CanUseDeepConv2D() argument 102 if (stride_rows > 1 || stride_cols > 1 || filter_rows != 3 || in CanUseDeepConv2D() 119 filter_rows, filter_cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 297 std::max(int64{0}, args.filter_rows - base_filter_rows); in operator ()() 334 if (f_r >= args.filter_rows) continue; in operator ()() 483 const int64 shard_cost = args.filter_rows * args.filter_cols * in_depth * in operator ()() 957 std::max(int64{0}, args.filter_rows - base_filter_rows); in operator ()()
|
D | nn_ops_test.cc | 106 int out_depth, int filter_rows, int filter_cols, in BM_ConvFloat() argument 127 TF_CHECK_OK(GetWindowedOutputSize(rows, filter_rows, stride, padding, in BM_ConvFloat() 138 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloat() 145 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloat() 151 SetConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in BM_ConvFloat() 160 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in BM_ConvFloat() 500 int out_depth, int filter_rows, in BM_ConvFloatDepthwise() argument 521 TF_CHECK_OK(GetWindowedOutputSize(rows, filter_rows, stride, padding, in BM_ConvFloatDepthwise() 533 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloatDepthwise() 544 static_cast<int64>(filter_rows * filter_cols) * in BM_ConvFloatDepthwise() [all …]
|
D | quantized_conv_ops.cc | 525 const int64 filter_rows = filter.dim_size(0); in Compute() local 542 GetWindowedOutputSize(input_rows, filter_rows, stride, in Compute() 563 filter_rows, filter_cols, out_depth, offset_filter, stride, in Compute()
|
D | conv_ops_fused_image_transform.cc | 799 const int filter_rows = static_cast<int>(filter.dim_size(0)); in Compute() local 827 GetWindowedOutputSize(padded_rows, filter_rows, stride_rows, in Compute() 848 << ", filter_rows = " << filter_rows in Compute() 859 padded_cols, in_depth, filter.flat<T>().data(), filter_rows, in Compute()
|
D | conv_ops.h | 87 int filter_rows;
|
D | eigen_spatial_convolutions_test.cc | 1383 int filter_count, int filter_cols, int filter_rows, in PackRhsHelper() argument 1480 filter_rows, filter_cols, // in PackRhsHelper() 1491 reshape_dims[0] = input_depth * filter_rows * filter_cols; // patch size in PackRhsHelper() 1556 int filter_count, int filter_cols, int filter_rows, in PackLhsHelper() argument 1563 eigen_assert(block_cols <= input_depth * filter_rows * filter_cols); in PackLhsHelper() 1572 Dimensions filter_dims(filter_count, filter_rows, filter_cols, input_depth); in PackLhsHelper() 1628 reshape_dims[1] = input_depth * filter_rows * filter_cols; in PackLhsHelper() 1683 const Index max_col = filter_rows * filter_cols * input_depth; in PackLhsHelper() 1714 "filter: count=", filter_count, " dims=", filter_rows, "x", filter_cols, in PackLhsHelper()
|
D | conv_grad_filter_ops.cc | 142 auto filter_rows = filter.dimension(0); in operator ()() local 154 desc.R = filter_rows; in operator ()()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | conv_ops_test.py | 1638 def ConstructAndTestGradient(self, batch, input_rows, input_cols, filter_rows, argument 1643 filter_shape = [filter_rows, filter_cols, in_depth, out_depth] 1646 output_rows = (input_rows - filter_rows + stride_rows) // stride_rows 1653 output_rows = (input_rows + padding[1][0] + padding[1][1] - filter_rows + 1723 filter_rows=3, 1741 filter_rows=2, 1759 filter_rows=3, 1777 filter_rows=2, 1795 filter_rows=3, 1813 filter_rows=4, [all …]
|
D | conv_ops_3d_test.py | 372 filter_planes, filter_rows, filter_cols = filter_shape 376 filter_planes, filter_rows, filter_cols, in_depth, out_depth 388 math.ceil((input_rows - filter_rows + 1.0) / strides[2]))
|
/external/tensorflow/tensorflow/python/framework/ |
D | common_shapes.py | 207 filter_rows = filter_shape[0] 225 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows, 266 filter_rows = filter_shape[0] 286 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows, 331 filter_rows = depthwise_filter_shape[0] 349 out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows,
|
/external/tensorflow/tensorflow/core/kernels/neon/ |
D | neon_depthwise_conv_op.cc | 82 const int32 filter_rows = filter.dim_size(0); in Compute() local 92 GetWindowedOutputSize(input_rows, filter_rows, stride, in Compute() 111 << ", " << in_depth << "]; Filter: [" << filter_rows << ", " in Compute()
|
/external/tensorflow/tensorflow/contrib/fused_conv/kernels/ |
D | fused_conv2d_bias_activation_op.cc | 203 const int32 filter_rows = GetFilterDim(filter, filter_format_, 'H'); in Compute() local 212 OP_REQUIRES_OK(context, GetWindowedOutputSize(conv_input_rows, filter_rows, in Compute() 227 << ", filter_rows = " << filter_rows in Compute() 479 const int filter_rows = GetFilterDim(filter_param, filter_format, 'H'); in launch() local 496 0, (output_rows - 1) * row_stride + filter_rows - conv_input_rows); in launch() 503 AdjustPaddingForCudnn(padding_rows, is_int8x4, filter_rows, &padding_rows, in launch() 588 filter_desc.set_input_filter_height(filter_rows) in launch() 669 {{filter_rows, filter_cols}}, in launch()
|
/external/tensorflow/tensorflow/core/grappler/costs/ |
D | utils_test.cc | 68 int filter_rows = 3; in TEST() local 83 CreateConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in TEST() 98 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in TEST()
|