/external/tensorflow/tensorflow/core/kernels/ |
D | deep_conv2d.cc | 49 int out_tile_rows, int out_tile_cols, int in_depth, in GetDeepConvCost() argument 54 input_tile_spatial_size * input_tile_spatial_size * in_depth; in GetDeepConvCost() 57 const int64 product_cost = input_tile_spatial_size * in_depth * out_depth; in GetDeepConvCost() 74 static int64 GetDirectConvCost(int filter_rows, int filter_cols, int in_depth, in GetDirectConvCost() argument 76 return filter_rows * filter_cols * in_depth * out_depth * out_rows * out_cols; in GetDirectConvCost() 98 int filter_cols, int in_depth, int out_depth, in CanUseDeepConv2D() argument 117 t.output_shape().cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 119 filter_rows, filter_cols, in_depth, out_depth, out_rows, out_cols); in CanUseDeepConv2D() 146 const int64 vectorized_size = args.in_depth / kPacketSize; in operator ()() 147 const int64 scalar_size = args.in_depth % kPacketSize; in operator ()() [all …]
|
D | depthwise_conv_op_gpu.h | 80 const int in_depth = args.in_depth; in DepthwiseConv2dGPUKernelNHWC() local 126 in_depth * (in_col + in_width * (in_row + input_offset_temp)); in DepthwiseConv2dGPUKernelNHWC() 130 (in_channel + in_depth * (filter_col + filter_offset_temp)); in DepthwiseConv2dGPUKernelNHWC() 148 in_depth * (in_col + in_width * (in_row + input_offset_temp)); in DepthwiseConv2dGPUKernelNHWC() 152 (in_channel + in_depth * (filter_col + filter_offset_temp)); in DepthwiseConv2dGPUKernelNHWC() 187 const int in_depth = args.in_depth; in DepthwiseConv2dGPUKernelNHWCSmall() local 202 const int in_row_size = in_width * in_depth; in DepthwiseConv2dGPUKernelNHWCSmall() 213 const int batch_blocks = (in_depth + kBlockDepth - 1) / kBlockDepth; in DepthwiseConv2dGPUKernelNHWCSmall() 233 const int tensor_idx = thread_pix * in_depth + thread_depth; in DepthwiseConv2dGPUKernelNHWCSmall() 243 const int max_channel = in_depth - thread_depth; in DepthwiseConv2dGPUKernelNHWCSmall() [all …]
|
D | depthwise_conv_grad_op.cc | 98 const int64 in_depth = GetTensorDim(input_shape, data_format_, 'C'); \ 99 OP_REQUIRES(context, in_depth == filter_shape.dim_size(2), \ 111 context, (depth_multiplier * in_depth) == out_depth, \ 136 args.in_depth = in_depth; \ 147 << input_rows << ", " << input_cols << ", " << in_depth \ 149 << in_depth << ", " << depth_multiplier << "]; stride = " << stride \ 284 const int64 in_depth = args.in_depth; in ComputeBackpropInput() local 294 const int64 base_output_index = (in_r * args.in_cols + in_c) * in_depth; in ComputeBackpropInput() 351 for (int64 d = 0; d < in_depth; ++d) { in ComputeBackpropInput() 410 args.in_rows * args.in_cols * args.in_depth; in operator ()() [all …]
|
D | depthwise_conv_op.cc | 191 args.in_rows * args.in_cols * args.in_depth; in operator ()() 317 const int64 in_depth = GetTensorDim(input, data_format_, 'C'); in Compute() local 318 OP_REQUIRES(context, in_depth == filter.dim_size(2), in Compute() 320 "input and filter must have the same depth: ", in_depth, in Compute() 327 const int32 out_depth = in_depth * depth_multiplier; in Compute() 375 bool use_cudnn = use_cudnn_ && (in_depth == 1 || use_cudnn_grouped_conv_); in Compute() 379 << ", " << in_depth << "]; Filter: [" << filter_rows << ", " in Compute() 380 << filter_cols << ", " << in_depth << ", " << depth_multiplier in Compute() 416 args.in_depth = in_depth; in Compute()
|
D | conv_ops_3d.cc | 133 const int64 in_depth = GetTensorDim(input, data_format_, 'C'); in Compute() local 138 context, in_depth == filter.dim_size(3), in Compute() 217 const int64 in_depth = GetTensorDim(input, data_format, 'C'); in launch() local 245 const uint64 k = in_depth; in launch() 272 const uint64 k = in_planes * in_rows * in_cols * in_depth; in launch() 312 in_depth); in launch() 330 FORMAT_NCHW, in_batch, {{in_planes, in_rows, in_cols}}, in_depth); in launch() 331 if (in_depth > 1) { in launch() 353 .set_feature_map_count(in_depth) in launch() 369 .set_input_feature_map_count(in_depth) in launch() [all …]
|
D | eigen_spatial_convolutions_test.cc | 669 const int in_depth = 5; in TEST() local 678 const int out_depth = in_depth; in TEST() 682 Tensor<float, 4> input(in_channels, in_depth, in_rows, in_cols); in TEST() 711 c - off_c + k >= 0 && p - off_p + i < in_depth && in TEST() 730 const int in_depth = 5; in TEST() local 739 const int out_depth = in_depth; in TEST() 743 Tensor<float, 4, RowMajor> input(in_cols, in_rows, in_depth, in_channels); in TEST() 773 c - off_c + k >= 0 && p - off_p + i < in_depth && in TEST() 792 const int in_depth = 5; in TEST() local 805 Tensor<float, 4> input(in_channels, in_depth, in_rows, in_cols); in TEST() [all …]
|
D | conv_ops.cc | 141 const int64 in_depth = GetTensorDim(input, data_format, 'C'); in operator ()() local 142 OP_REQUIRES(ctx, in_depth == filter.dim_size(2), in operator ()() 156 int input_cols, int in_depth, int filter_rows, in Run() argument 172 int input_cols, int in_depth, int filter_rows, in Run() argument 180 in_depth, out_depth, out_rows, out_cols)) { in Run() 188 args.in_depth = in_depth; in Run() 213 int input_cols, int in_depth, int filter_rows, in Run() argument 227 int input_cols, int in_depth, int filter_rows, in Run() argument 237 desc.C = in_depth; in Run() 359 const int in_depth = static_cast<int>(in_depth_raw); in ComputeConv2DDimension() local [all …]
|
D | deep_conv2d.h | 72 int in_depth; member 87 in_depth(0), in Conv2DArgs() 101 int filter_cols, int in_depth, int out_depth,
|
D | depthwise_conv_op.h | 30 int in_depth; member 47 in_depth(0), in DepthwiseArgs() 200 (args.in_depth / kPacketSize) * kPacketSize; 201 const int64 input_scalar_size = args.in_depth % kPacketSize; 232 auto* in = input + (in_r * args.in_cols + in_c) * args.in_depth;
|
D | conv_grad_ops_3d.cc | 377 dims.spatial_dims[2].filter_size * dims.in_depth; in Compute() 452 dims.spatial_dims[2].input_size * dims.in_depth; in Compute() 491 Col2im<T>(col_buffer_data, dims.in_depth, in Compute() 544 Col2im<T>(im2col_buf, dims.in_depth, in Compute() 845 dims.spatial_dims[2].filter_size * dims.in_depth; in Compute() 914 dims.spatial_dims[2].input_size * dims.in_depth; in Compute() 957 Im2col<T>(input_data_shard, dims.in_depth, in Compute() 1175 const uint64 n = dims.in_depth; in Compute() 1204 dims.input_size(2) * dims.in_depth; in Compute() 1240 dims.in_depth, in Compute() [all …]
|
D | conv_grad_filter_ops.cc | 140 auto in_depth = input.dimension(3); in operator ()() local 150 desc.C = in_depth; in operator ()() 298 dims.in_depth; in Compute() 336 dims.spatial_dims[1].input_size * dims.in_depth; in Compute() 378 input_data_shard, dims.in_depth, dims.spatial_dims[0].input_size, in Compute() 605 bool is_grouped_convolution = filter_shape.dim_size(2) != dims.in_depth; in operator ()() 612 const uint64 m = dims.in_depth; in operator ()() 655 dims.spatial_dims[1].input_size * dims.in_depth; in operator ()() 700 new_in_cols, dims.in_depth), in operator ()() 720 .set_feature_map_count(dims.in_depth) in operator ()() [all …]
|
D | conv_grad_input_ops.cc | 147 auto in_depth = input_backward.dimension(3); in operator ()() local 156 desc.C = in_depth; in operator ()() 394 dims.in_depth; in Compute() 450 dims.spatial_dims[1].input_size * dims.in_depth; in Compute() 488 col_buffer_data, dims.in_depth, dims.spatial_dims[0].input_size, in Compute() 517 Col2im<T>(im2col_buf, dims.in_depth, in Compute() 744 bool is_grouped_convolution = filter_shape.dim_size(2) != dims.in_depth; in operator ()() 753 const uint64 n = dims.in_depth; in operator ()() 786 dims.spatial_dims[1].input_size * dims.in_depth; in operator ()() 824 data_format, dims.batch_size, new_in_rows, new_in_cols, dims.in_depth); in operator ()() [all …]
|
D | conv_grad_ops.cc | 129 dims->in_depth = input_shape.dim_size(feature_dim); in ConvBackpropComputeDimensionsV2() 132 VLOG(2) << "input vs filter_in depth " << dims->in_depth << " " in ConvBackpropComputeDimensionsV2() 134 if (dims->in_depth % filter_shape.dim_size(num_dims - 2)) { in ConvBackpropComputeDimensionsV2()
|
D | conv_ops_test.cc | 1104 static Conv2DGraph Conv2D(int batch, int height, int width, int in_depth, in Conv2D() argument 1108 Tensor images_t = MakeRandomTensor({batch, height, width, in_depth}); in Conv2D() 1109 Tensor filter_t = MakeRandomTensor({filter_w, filter_h, in_depth, out_depth}); in Conv2D() 1128 int in_depth, int filter_w, in Conv2DWithBias() argument 1131 Conv2D(batch, height, width, in_depth, filter_w, filter_h, out_depth); in Conv2DWithBias() 1152 int width, int in_depth, in Conv2DWithBiasAndRelu() argument 1157 batch, height, width, in_depth, filter_w, filter_h, out_depth); in Conv2DWithBiasAndRelu() 1174 int width, int in_depth, in Conv2DWithBatchNorm() argument 1178 Conv2D(batch, height, width, in_depth, filter_w, filter_h, out_depth); in Conv2DWithBatchNorm() 1210 int batch, int height, int width, int in_depth, int filter_w, int filter_h, in Conv2DWithBatchNormAndRelu() argument [all …]
|
D | conv_ops_using_gemm.cc | 479 const int64 in_depth = GetTensorDim(input, data_format_, 'C'); in Compute() local 480 OP_REQUIRES(context, in_depth == filter.dim_size(2), in Compute() 482 "input and filter must have the same depth: ", in_depth, in Compute() 535 VLOG(2) << "Conv2D: in_depth = " << in_depth in Compute() 550 in_depth, filter.flat<T>().data(), filter_rows, filter_cols, in Compute()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | conv_ops_3d_test.py | 368 self, batch, input_shape, filter_shape, in_depth, out_depth, stride, argument 374 input_shape = [batch, input_planes, input_rows, input_cols, in_depth] 376 filter_planes, filter_rows, filter_cols, in_depth, out_depth 471 in_depth=2, 483 in_depth=2, 495 in_depth=2, 507 in_depth=2, 519 in_depth=2, 531 in_depth=2, 543 in_depth=2, [all …]
|
D | conv_ops_test.py | 1639 filter_cols, in_depth, out_depth, stride_rows, argument 1642 input_shape = [batch, input_rows, input_cols, in_depth] 1643 filter_shape = [filter_rows, filter_cols, in_depth, out_depth] 1725 in_depth=2, 1743 in_depth=2, 1761 in_depth=2, 1779 in_depth=2, 1797 in_depth=4, 1815 in_depth=2, 1833 in_depth=2, [all …]
|
/external/tensorflow/tensorflow/core/kernels/neon/ |
D | neon_depthwise_conv_op.cc | 73 const int32 in_depth = input.dim_size(3); in Compute() local 74 OP_REQUIRES(context, in_depth == filter.dim_size(2), in Compute() 76 "input and filter must have the same depth: ", in_depth, in Compute() 86 const int32 out_depth = in_depth * depth_multiplier; in Compute() 111 << ", " << in_depth << "]; Filter: [" << filter_rows << ", " in Compute() 112 << filter_cols << ", " << in_depth << ", " << depth_multiplier in Compute()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Conv3D.pbtxt | 6 Shape `[batch, in_depth, in_height, in_width, in_channels]`. 34 [batch, in_depth, in_height, in_width, in_channels]. 36 [batch, in_channels, in_depth, in_height, in_width].
|
D | api_def_MaxPool3D.pbtxt | 40 [batch, in_depth, in_height, in_width, in_channels]. 42 [batch, in_channels, in_depth, in_height, in_width].
|
D | api_def_AvgPool3D.pbtxt | 40 [batch, in_depth, in_height, in_width, in_channels]. 42 [batch, in_channels, in_depth, in_height, in_width].
|
D | api_def_MaxPool3DGrad.pbtxt | 46 [batch, in_depth, in_height, in_width, in_channels]. 48 [batch, in_channels, in_depth, in_height, in_width].
|
D | api_def_AvgPool3DGrad.pbtxt | 46 [batch, in_depth, in_height, in_width, in_channels]. 48 [batch, in_channels, in_depth, in_height, in_width].
|
D | api_def_MaxPool3DGradGrad.pbtxt | 52 [batch, in_depth, in_height, in_width, in_channels]. 54 [batch, in_channels, in_depth, in_height, in_width].
|
/external/tensorflow/tensorflow/core/grappler/costs/ |
D | utils_test.cc | 72 int in_depth = 3; in TEST() local 80 CreateConstOp("input", {batch, rows, cols, in_depth}, input); in TEST() 83 CreateConstOp("filter", {filter_rows, filter_cols, in_depth, out_depth}, in TEST() 92 std::vector<int32>({batch, rows, cols, in_depth}), in TEST() 98 std::vector<int32>({filter_rows, filter_cols, in_depth, out_depth}), in TEST()
|