/external/tensorflow/tensorflow/python/ops/ |
D | nn_fused_batchnorm_test.py | 85 is_training=False) 130 is_training=True) 188 is_training=True): argument 198 if is_training: 211 is_training=is_training) 227 is_training=is_training) 248 is_training=True, argument 261 if is_training: 274 is_training=is_training) 278 if is_training: [all …]
|
D | nn_grad.py | 863 is_training = op.get_attr("is_training") 867 if is_training: 876 is_training=is_training) 891 is_training=is_training) 914 is_training=True): argument 941 if is_training: 1003 is_training = op.get_attr("is_training") 1017 grad_y, x, scale, pop_mean, pop_var, epsilon, data_format, is_training)
|
/external/tensorflow/tensorflow/examples/speech_commands/ |
D | models.py | 96 is_training, runtime_settings=None): argument 131 is_training) 133 return create_conv_model(fingerprint_input, model_settings, is_training) 136 is_training) 139 is_training, runtime_settings) 142 is_training) 161 def create_single_fc_model(fingerprint_input, model_settings, is_training): argument 186 if is_training: 197 if is_training: 203 def create_conv_model(fingerprint_input, model_settings, is_training): argument [all …]
|
/external/tensorflow/tensorflow/contrib/slim/python/slim/nets/ |
D | vgg.py | 76 is_training=True, argument 118 net, dropout_keep_prob, is_training=is_training, scope='dropout6') 121 net, dropout_keep_prob, is_training=is_training, scope='dropout7') 141 is_training=True, argument 183 net, dropout_keep_prob, is_training=is_training, scope='dropout6') 186 net, dropout_keep_prob, is_training=is_training, scope='dropout7') 206 is_training=True, argument 248 net, dropout_keep_prob, is_training=is_training, scope='dropout6') 251 net, dropout_keep_prob, is_training=is_training, scope='dropout7')
|
D | resnet_v1.py | 131 is_training=True, argument 198 with arg_scope([layers.batch_norm], is_training=is_training): 253 is_training=True, argument 269 is_training, 279 is_training=True, argument 295 is_training, 305 is_training=True, argument 321 is_training, 331 is_training=True, argument 347 is_training,
|
D | resnet_v2.py | 133 is_training=True, argument 202 with arg_scope([layers.batch_norm], is_training=is_training): 266 is_training=True, argument 282 is_training, 292 is_training=True, argument 308 is_training, 318 is_training=True, argument 334 is_training, 344 is_training=True, argument 360 is_training,
|
D | vgg_test.py | 59 for is_training in [True, False]: 62 _, end_points = vgg.vgg_a(inputs, num_classes, is_training=is_training) 112 logits, _ = vgg.vgg_a(eval_inputs, is_training=False) 134 eval_inputs, is_training=False, spatial_squeeze=False) 180 for is_training in [True, False]: 183 _, end_points = vgg.vgg_16(inputs, num_classes, is_training=is_training) 246 logits, _ = vgg.vgg_16(eval_inputs, is_training=False) 268 eval_inputs, is_training=False, spatial_squeeze=False) 314 for is_training in [True, False]: 317 _, end_points = vgg.vgg_19(inputs, num_classes, is_training=is_training) [all …]
|
D | overfeat.py | 61 is_training=True, argument 114 net, dropout_keep_prob, is_training=is_training, scope='dropout6') 117 net, dropout_keep_prob, is_training=is_training, scope='dropout7')
|
D | alexnet.py | 65 is_training=True, argument 118 net, dropout_keep_prob, is_training=is_training, scope='dropout6') 121 net, dropout_keep_prob, is_training=is_training, scope='dropout7')
|
/external/tensorflow/tensorflow/contrib/quantize/python/ |
D | quantize_test.py | 44 for is_training in params: 45 test_fn(is_training) 50 def _TestInsertQuantOpFailsWhenOpsNotConnected(self, is_training): argument 63 quantize._InsertQuantOp('test', is_training, conv.op, [relu.op], 71 def _TestInsertQuantOpForAddAfterConv2d(self, is_training): argument 86 quantize.Quantize(graph, is_training, weight_bits=8, activation_bits=8) 110 def _TestInsertQuantOpForAddAfterSeparableConv2d(self, is_training): argument 126 quantize.Quantize(graph, is_training, weight_bits=8, activation_bits=8) 147 def _TestInsertQuantOpInSeparableConv2d(self, is_training): argument 168 quantize.Quantize(graph, is_training, weight_bits=8, activation_bits=8) [all …]
|
D | quantize_graph.py | 27 is_training=True, argument 73 is_training=is_training) 76 is_training, 120 is_training=True, 143 _create_graph(input_graph=input_graph, is_training=False) 199 is_training=True, 244 is_training=False,
|
D | quantize.py | 47 is_training, argument 100 is_training, 128 is_training, 149 is_training, 172 is_training, 207 is_training, 220 is_training, 230 is_training, argument 268 is_training, 648 is_training, argument [all …]
|
D | fold_batch_norms.py | 37 def FoldBatchNorms(graph, is_training, freeze_batch_norm_delay=None): argument 53 graph, is_training, freeze_batch_norm_delay=freeze_batch_norm_delay) 56 is_training=is_training, 60 def _FoldFusedBatchNorms(graph, is_training, freeze_batch_norm_delay): argument 93 if is_training: 266 is_training = bn_op.get_attr('is_training') 267 if is_training: 502 def _FoldUnfusedBatchNorms(graph, is_training, freeze_batch_norm_delay): argument 531 is_training=is_training) 717 is_training): argument [all …]
|
D | quant_ops.py | 68 is_training=True, argument 123 if not is_training: 193 is_training=True, argument 249 if not is_training:
|
D | quant_ops_test.py | 100 is_training=True, 115 is_training=True, 126 is_training=True,
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/revnet/ |
D | imagenet_input.py | 35 image_bytes=image_bytes, is_training=False) 73 def __init__(self, is_training, argument 82 self.is_training = is_training 127 is_training=self.is_training, 159 self.data_dir, 'train-*' if self.is_training else 'validation-*') 160 dataset = tf.data.Dataset.list_files(file_pattern, shuffle=self.is_training) 162 if self.is_training and not self.cache:
|
/external/tensorflow/tensorflow/contrib/receptive_field/python/util/examples/ |
D | rf_benchmark.py | 127 images, num_classes=None, is_training=False, global_pool=False) 130 images, num_classes=None, is_training=False, global_pool=False) 133 images, num_classes=None, is_training=False, global_pool=False) 136 images, num_classes=None, is_training=False, global_pool=False) 139 images, num_classes=None, is_training=False, global_pool=False) 142 images, num_classes=None, is_training=False, global_pool=False) 145 images, num_classes=None, is_training=False, global_pool=False) 148 images, num_classes=None, is_training=False, global_pool=False) 478 is_training=False) as arg_sc:
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_FusedBatchNormGrad.pbtxt | 24 When is_training is True, a 1D Tensor for the computed batch 25 mean to be reused in gradient computation. When is_training is 33 When is_training is True, a 1D Tensor for the computed batch 35 gradient computation. When is_training is False, a 1D Tensor 91 name: "is_training"
|
D | api_def_FusedBatchNormGradV2.pbtxt | 24 When is_training is True, a 1D Tensor for the computed batch 25 mean to be reused in gradient computation. When is_training is 33 When is_training is True, a 1D Tensor for the computed batch 35 gradient computation. When is_training is False, a 1D Tensor 97 name: "is_training"
|
D | api_def_CudnnRNNV2.pbtxt | 32 is_training: Indicates whether this operation is used for inferenece or 35 is only produced if is_training is true. 37 only produced if is_training is true. It is output on host memory rather than
|
/external/tensorflow/tensorflow/contrib/cudnn_rnn/python/ops/ |
D | cudnn_rnn_ops.py | 956 is_training, argument 1017 "is_training": is_training, 1048 is_training, argument 1095 return _cudnn_rnn(inputs, input_h, input_c, params, is_training, CUDNN_LSTM, 1103 is_training, argument 1152 inputs, input_h, input_c, params, is_training, rnn_mode, sequence_lengths, 1160 is_training, argument 1205 return _cudnn_rnn_no_input_c(inputs, input_h, params, is_training, CUDNN_GRU, 1213 is_training, argument 1257 return _cudnn_rnn_no_input_c(inputs, input_h, params, is_training, [all …]
|
/external/tensorflow/tensorflow/contrib/cudnn_rnn/python/kernel_tests/ |
D | cudnn_rnn_ops_test.py | 74 is_training=True, argument 82 if is_training and not np.isclose(dropout, 0): 155 is_training=is_training, 162 if is_training: 188 if is_training: 450 is_training=False, 483 is_training=False, 524 is_training=False, 539 is_training=False, 558 is_training=True, argument [all …]
|
/external/tensorflow/tensorflow/python/compiler/tensorrt/test/ |
D | quantization_mnist_test.py | 161 def _Run(self, is_training, use_trt, batch_size, num_epochs, model_dir): argument 216 if is_training: 247 model_dir=model_dir if is_training else None, 250 if is_training: 271 is_training=False, 283 is_training=False,
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
D | composable_model.py | 90 def build_model(self, features, feature_columns, is_training): argument 228 def build_model(self, features, feature_columns, is_training): argument 355 def build_model(self, features, feature_columns, is_training): argument 388 if self._dropout is not None and is_training:
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | fused_batchnorm_test.py | 106 is_training=False) 149 is_training=True) 236 is_training=True) 286 is_training=False) 290 grad, x, scale, mean, var, data_format=data_format, is_training=False)
|